Crystallography Reports

, Volume 60, Issue 1, pp 83–89 | Cite as

Molecular dynamics studies of pathways of water movement in cyanobacterial photosystem II

  • A. G. Gabdulkhakov
  • V. G. Kljashtorny
  • M. V. Dontsova
Structure of Macromolecular Compounds


Photosystem II (PSII) catalyzes the light-induced generation of oxygen from water. The oxygen-evolving complex is buried deep in the protein on the lumenal side of PSII, and water molecules need to pass through protein subunits to reach the active site—the manganese cluster. Previous studies on the elucidation of water channels in PSII were based on an analysis of the cavities in the static PSII structure determined by X-ray diffraction. In the present study, we perform molecular dynamics simulations of the water movement in the transport system of PSII.


Molecular Dynamic Simulation Crystallography Report Root Mean Square Deviation Lumenal Side Photosynthetic Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Umena, K. Kawakami, J. R. Shen, et al., Nature 473, 55 (2011).ADSCrossRefGoogle Scholar
  2. 2.
    M. Broser, A. Gabdulkhakov, J. Kern, et al., J. Biol. Chem. 285, 26255 (2010).CrossRefGoogle Scholar
  3. 3.
    A. G. Gabdulkhakov and M. V. Dontsova, Usp. Biol. Khim. 53, 323 (2013).Google Scholar
  4. 4.
    A. Guskov, J. Kern, A. Gabdulkhakov, et al., Nat. Struct. Mol. Biol. 16, 334 (2009).CrossRefGoogle Scholar
  5. 5.
    B. Kok, B. Forbush, and M. McGloin, Photochem. Photobiol. 11, 457 (1970).CrossRefGoogle Scholar
  6. 6.
    Photosystem II: The Light-Driven Water:Plastoquinone. Oxidoreductase. Advances in Photosynthesis, Ed. by T. Wydrzynski, K. Satoh, and Govindjee (Springer, Dordrecht, 2005).Google Scholar
  7. 7.
    J. Kern and G. Renger, Photosynth. Res. 94, 183 (2007).CrossRefGoogle Scholar
  8. 8.
    A. Zouni, H. T. Witt, J. Kern, et al., Nature 409, 739 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    K. N. Ferreira, T. M. Iverson, K. Maghlaoui, et al., Science 303, 1831 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    J. W. Murray and J. Barber, J. Struct. Biol. 159, 228 (2007).CrossRefGoogle Scholar
  11. 11.
    A. Gabdulkhakov, A. Guskov, M. Broser, et al., Structure 17, 1223 (2009).CrossRefGoogle Scholar
  12. 12.
    F. M. Ho and S. Styring, Biochim. Biophys. Acta 1777, 140 (2008).CrossRefGoogle Scholar
  13. 13.
    J. Cohen, K. Kim, P. King, et al., Structure 13, 1321 (2005).CrossRefGoogle Scholar
  14. 14.
    S. Vassiliev, P. Comte, A. Mahboob, et al., Biochemistry 49, 1873 (2010).CrossRefGoogle Scholar
  15. 15.
    S. Vassiliev, T. Zaraiskaya, and D. Bruce, Biochim. Biophys. Acta 1817, 1671 (2012).CrossRefGoogle Scholar
  16. 16.
    K. Ogata, T. Yuki, M. Hatakeyama, et al., J. Am. Chem. Soc. 135, 15670 (2013).CrossRefGoogle Scholar
  17. 17.
    B. Hess, C. Kutzner, D. v. d. Spoel, et al., Chem. Theor. Comput. 4, 435 (2008).CrossRefGoogle Scholar
  18. 18.
    A. D. MacKerell, D. Bashford, M. Bellott, et al., J. Phys. Chem. 102, 3586 (1998).CrossRefGoogle Scholar
  19. 19.
    A. D. Mackerell, Jr, M. Feig, et al., J. Comput. Chem. 25, 1400 (2004).CrossRefGoogle Scholar
  20. 20.
    B. Hess, H. Bekker, H. J. C. Berendsen, et al., J. Comput. Chem. 18, 1463 (1997).CrossRefGoogle Scholar
  21. 21.
    T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).ADSCrossRefGoogle Scholar
  22. 22.
    U. Essmann, L. Perera, M. L. Berkowitz, et al., J. Chem. Phys. 103, 8577 (1995).ADSCrossRefGoogle Scholar
  23. 23.
    H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, et al., J. Chem. Phys. 81, 3684 (1984).ADSCrossRefGoogle Scholar
  24. 24.
    W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, et al., J. Chem. Phys. 79, 926 (1983).ADSCrossRefGoogle Scholar
  25. 25.
  26. 26.
    R. A. Laskowski, M. W. MacArthur, D. S. Moss, et al., J. Appl. Crystallogr. 26, 283 (1993).CrossRefGoogle Scholar
  27. 27.
    I. Sakurai, J. R. Shen, J. Leng, et al., J. Biochem. 140, 201 (2006).CrossRefGoogle Scholar
  28. 28.
    A. Zouni, R. Jordan, E. Schlodder, et al., Biochim. Biophys. Acta 1457, 103 (2000).CrossRefGoogle Scholar
  29. 29.
    K. Olesen and L. E. Andreasson, Biochemistry 42, 2025 (2003).CrossRefGoogle Scholar
  30. 30.
    M. L. Quillin, W. A. Breyer, I. J. Griswold, et al., J. Mol. Biol. 302, 955 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • A. G. Gabdulkhakov
    • 1
  • V. G. Kljashtorny
    • 1
  • M. V. Dontsova
    • 1
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations