Advertisement

Crystallography Reports

, Volume 59, Issue 6, pp 862–866 | Cite as

Formation of unusual nonferroic domains in TeO2 single crystals under external electric field

  • M. V. Kovalchuk
  • A. E. Blagov
  • A. G. Kulikov
  • N. V. Marchenkov
  • Yu. V. Pisarevsky
Diffraction and Scattering of Ionizing Radiations

Abstract

The formation of unusual slowly relaxing domains under an external dc electric field has been revealed in paratellurite (TeO2) crystals. These domains differ from those arising in ferroics (ferromagnets, ferroelectrics, ferroelastics, etc.). The effect is characterized by the existence of a threshold field strength (at which domains begin to be formed) and long equilibrium settling times (up to a few hours, depending on the electric field strength). A crystal returns to the initial single-domain state also after a few hours after the field is switched off. High-resolution triple-crystal X-ray diffractometry has revealed that domains retaining the paraelastic tetragonal phase rotate with respect to each other in space without changing their lattice parameter. The domain sizes are 2–4 mm, depending on the field strength. Currently, the exact mechanisms of domain formation are unclear. Possible reasons for the formation of these defects and an analogy of the observed effects with the behavior of liquid crystals under electric field are discussed.

Keywords

Crystallography Report External Electric Field Domain Formation Single Domain State Paratellurite Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Blagov, N. V. Marchenkov, Yu. V. Pisarevsky, et al., Crystallogr. Rep. 58(1), 49 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    M. A. Dubinskii and L. Merkle, Proc. Conf. Adv. Solid-State Photonics, Santa Fe, New Mexico, 2004, Ed. by G. Quarles (Optical Society of America, Washington, DC, 2004), Vol. 94, p. 451.Google Scholar
  3. 3.
    N. Uchida, Phys. Rev. B 4, 3736 (1971).ADSCrossRefGoogle Scholar
  4. 4.
    N. Uchida and Y. Ohmachi, J. Appl. Phys. 40, 4692 (1969).ADSCrossRefGoogle Scholar
  5. 5.
    P. S. Peercy and I. J. Fritz, Phys. Rev. Lett. 32, 466 (1974).ADSCrossRefGoogle Scholar
  6. 6.
    E. F. Skelton, J. L. Feldman, C. Y. Liu, and I. L. Spain, Phys. Rev. B 13, 2605 (1976).ADSCrossRefGoogle Scholar
  7. 7.
    N. J. Berg and J. Lee, Acousto-Optic Signal Processing (Marcel Dekker, New York, 1983), p. 50.Google Scholar
  8. 8.
    A. Yu. Kazimirov, M. V. Kovalchuk, and V. G. Kohn, Acta Crystallogr. A 46, 643 (1990).CrossRefGoogle Scholar
  9. 9.
    B. I. Swanson, J. A. Brozik, S. P. Love, et al., Phys. Rev. Lett. 82, 3288 (1999).ADSCrossRefGoogle Scholar
  10. 10.
    S. Flach, Phys. Rev. E 58, 4116 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • M. V. Kovalchuk
    • 1
  • A. E. Blagov
    • 1
  • A. G. Kulikov
    • 1
  • N. V. Marchenkov
    • 1
  • Yu. V. Pisarevsky
    • 1
  1. 1.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia

Personalised recommendations