Advertisement

Crystallography Reports

, Volume 59, Issue 5, pp 679–684 | Cite as

In situ study of the growth and degradation processes in tetragonal lysozyme crystals on a silicon substrate by high-resolution X-ray diffractometry

  • M. V. Kovalchuk
  • P. A. Prosekov
  • M. A. Marchenkova
  • A. E. Blagov
  • Yu. A. D’yakova
  • E. Yu. Tereshchenko
  • Yu. V. Pisarevskii
  • O. A. Kondratev
Diffraction and Scattering of Ionizing Radiation

Abstract

The results of an in situ study of the growth of tetragonal lysozyme crystals by high-resolution X-ray diffractometry are considered. The crystals are grown by the sitting-drop method on crystalline silicon substrates of different types: both on smooth substrates and substrates with artificial surface-relief structures using graphoepitaxy. The crystals are grown in a special hermetically closed crystallization cell, which enables one to obtain images with an optical microscope and perform in situ X-ray diffraction studies in the course of crystal growth. Measurements for lysozyme crystals were carried out in different stages of the crystallization process, including crystal nucleation and growth, developed crystals, the degradation of the crystal structure, and complete destruction.

Keywords

Crystallography Report Protein Crystal Reservoir Solution Lysozyme Crystal Crystallization Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Koval’chuk, Vestn. Ross. Akad. Nauk, 73(5), 405 (2003).Google Scholar
  2. 2.
    V. I. Minkin, Izv. Ross. Akad. Nauk, Ser. Khim., No. 4, 673 (2008).Google Scholar
  3. 3.
    V. F. Razumov, Izv. Ross. Akad. Nauk, Ser. Fiz. 76(2), 223 (2012).Google Scholar
  4. 4.
    Protein Structure, Stability, and Folding, Ed. by P. Murphy (Humana Press, Totowa, New York, 2001), p. 261.Google Scholar
  5. 5.
    E. I. Givargizov, Oriented Crystallization on Amorphous Substrates (Plenum Press, New York, 1991), Ch. 3.CrossRefGoogle Scholar
  6. 6.
    E. Givargizov, A. I. Grebenko, L. A. Zadorozhnaya, and V. R. Melik-Adamyan, J. Cryst. Growth 310, 847 (2008).CrossRefADSGoogle Scholar
  7. 7.
    A. V. Svanidze, S. G. Lushnikov, and L. A. Shuvalov, Crystallogr. Rep. 50(5), 789 (2005).CrossRefADSGoogle Scholar
  8. 8.
    A. McPherson, Methods 34, 254 (2004).CrossRefGoogle Scholar
  9. 9.
    L. A. Zadorozhnaya, M. V. Koval’chuk, Yu. N. Shilin, et al., RF Patent, No. RU 2307204.Google Scholar
  10. 10.
    The Rigaku Journal 23, 52 (2006).Google Scholar
  11. 11.
    D. K. Bowen and B. K. Tanner, High-Resolution X-Ray Diffractometry and Topography (Taylor and Francis, London, 1998).Google Scholar
  12. 12.
    H. M. Volz and R. J. Matyi, Acta Crystallogr. D 56, 881 (2000).CrossRefGoogle Scholar
  13. 13.
    E. H. Snell, S. Weisgerber, J. R. Helliwell, et al., Acta Crystallogr. D 51, 1099 (1995).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • M. V. Kovalchuk
    • 1
  • P. A. Prosekov
    • 1
  • M. A. Marchenkova
    • 1
  • A. E. Blagov
    • 1
  • Yu. A. D’yakova
    • 1
  • E. Yu. Tereshchenko
    • 1
  • Yu. V. Pisarevskii
    • 1
  • O. A. Kondratev
    • 1
  1. 1.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia

Personalised recommendations