Crystallography Reports

, Volume 58, Issue 5, pp 735–738 | Cite as

Investigation into the growth and structure of thin-film solid solutions of iron-based superconductors in the FeSe0.92-FeSe0.5Te0.5 system

  • E. A. StepantsovEmail author
  • S. M. Kazakov
  • V. V. Belikov
  • I. P. Makarova
  • R. Arpaia
  • R. Gunnarsson
  • F. Lombardi
Surface and Thin Films


Thin films of FeSe0.92 and FeSe0.5Te0.5 iron chalcogenide superconductors and solid solutions containing these components in different ratios have been grown on the surface of LaAlO3 (10\(\bar 1\)2) crystals by pulsed laser deposition. Films of solid solutions have been deposited by simultaneous laser ablation from two targets of the FeSe0.92 and FeSe0.5Te0.5 stoichiometric compositions onto one substrate. An X-ray diffraction study of the film structure shows that the films grown are epitaxial and their lattice parameters regularly vary with the ratio of the deposited components, which was controllably varied by changing the ablation intensities from the targets.


Pulse Laser Deposition Crystallography Report FeSe Chemical Mechanical Polishing Epitaxial Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Kamihara, H. Hiramatsu, M. Hirano, et al., Phys. Rev. B 78, 184512 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    F. Bondino, E. Magnano, C. H. Booth, et al., Phys. Rev. B 82, 014529 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    R. Jin, M. H. Pan, X. B. He, et al., Supercond. Sci. Technol. 23, 054005 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    W. Uhoya, G. Tsoi, Y. K. Vohra, et al., J. Phys.: Condens. Matter 22, 292202 (2010).CrossRefGoogle Scholar
  5. 5.
    C. P. Cheney, F. Bondino, T. A. Callcott, et al., Phys. Rev. B 81, 104518 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    F. L. Ning, K. Ahilan, T. Imai, et al., Phys. Rev. Lett. 104, 037001 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    M. A. McGuire, D. J. Singh, A. S. Sefat, et al., J. Solid State Chem. 182, 2326 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    F. L. Ning, K. Ahilan, T. Imai, et al., J. Phys. Soc. Jpn. 77, 103705 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    B. C. Sales, A. S. Sefat, M. A. McGuire, et al., Phys. Rev. B 79, 094521 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    S. L. Bud’ko and P. C. Canfield, Phys. Rev. B 80, 134523 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    H. A. Mook, M. D. Lumsden, A. D. Christianson, et al., Phys. Rev. Lett. 104, 187002 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Imai, T. Akiike, R. Tanaka, et al., Physica C 470, 1038 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Han, W. Y. Li, L. X. Cao, et al., Phys. Rev. Lett. 104, 017003 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    G. Brorsson, E. Olsson, Z. G. Ivanov, et al., J. Appl. Phys. 75(12), 7958 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • E. A. Stepantsov
    • 1
    Email author
  • S. M. Kazakov
    • 2
  • V. V. Belikov
    • 2
  • I. P. Makarova
    • 1
  • R. Arpaia
    • 3
  • R. Gunnarsson
    • 3
  • F. Lombardi
    • 3
  1. 1.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Department of Microtechnology and NanoscienceChalmers University of TechnologyGothenburgSweden

Personalised recommendations