Crystallography Reports

, Volume 58, Issue 5, pp 743–748

Quantum levitation of nanoparticles seen with ultracold neutrons

  • V. V. Nesvizhevsky
  • A. Yu. Voronin
  • A. Lambrecht
  • S. Reynaud
  • E. V. Lychagin
  • A. Yu. Muzychka
  • A. V. Strelkov
Surface and Thin Films

Abstract

Analyzing new experiments with ultracold neutrons (UCNs) we show that physical adsorption of nanoparticles/nanodroplets, levitating in high-excited states in a deep and broad potential well formed by van der Waals/Casimir-Polder (vdW/CP) forces results in new effects on a cross-road of the fields of fundamental interactions, neutron, surface and nanoparticle physics. Accounting for the interaction of UCNs with nanoparticles explains a recently discovered intriguing so-called “small heating” of UCNs in traps. It might be relevant to the striking conflict of the neutron lifetime experiments with smallest reported uncertainties by adding false effects there.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Oura, V. G. Lifshits, and A. A. Saranin, Surface Science: An Introduction (Bergin-Verlag, Berlin, 2003).CrossRefGoogle Scholar
  2. 2.
    K. W. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience (Wiley, Chichester, West Sussex, 2008).Google Scholar
  3. 3.
    G. Antczak and G. Ehrlich, Surf. Sci. Rep. 62, 39 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    E. Shustorovich, Metal-Surface Reaction Energetics: Theory and Applications to Heterogeneous Analysis, Chemisorption, and Surface Diffusion (VCN, 1991).Google Scholar
  5. 5.
    P. G. van Zwol et al., Phys. Rev. B 80, 235401 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    W. Broer et al., Eur. Phys. Lett. 95, 30001 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    V. I. Luschikov, Yu. N. Pokotilovsky, A. V. Strelkov, and F. L. Shapiro, JETP Lett. 9, 23 (1969).ADSGoogle Scholar
  8. 8.
    V. K. Ignatovich, The Physics of Ultracold Neutrons (Clarendon, Oxford, 1990).Google Scholar
  9. 9.
    R. Golub, D. J. Richardson, and S. K. Lamoreux, Ultra-Cold Neutrons (Higler, Bristol, 1991).Google Scholar
  10. 10.
    V. V. Nesvizhevsky, A. Yu. Voronin, A. Lambrecht, and S. Reynaud, New J. Phys. 14, 093053 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    V. V. Nesvizhevsky, Phys. At. Nucl. 65, 400 (2002).CrossRefGoogle Scholar
  12. 12.
    A. Canaguier-Durand et al., Phys. Rev. Lett. 102, 230404 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    A. Canaguier-Durand et al., Phys. Rev. A 83, 032508 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    V. V. Nesvizhevsky et al., Eur. J. Appl. Phys. 6, 151 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    A. V. Strelkov et al., Nucl. Instrum. Methods Phys. Res., Sect. A 440, 695 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    L. Bondarenko et al., JETP Lett. 68, 691 (1998).ADSCrossRefGoogle Scholar
  17. 17.
    E. V. Lychagin et al., Phys. At. Nucl. 65, 1995 (2002).CrossRefGoogle Scholar
  18. 18.
    D. G. Kartashov et al., Int. J. Nanoscience. 6, 501 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    S. K. Lamoreaux and R. Golub, Phys. Rev. C 66, 044309 (2002).ADSCrossRefGoogle Scholar
  20. 20.
    A. L. Barabanov and S. T. Belyaev, Eur. Phys. J. B 15, 59 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    A. Stepaniants et al., J. Low Temp. Phys. 113, 1159 (1999).ADSCrossRefGoogle Scholar
  22. 22.
    S. S. Malik et al., Phys. Lett. A 260, 328 (1999).ADSCrossRefGoogle Scholar
  23. 23.
    Y. N. Pokotilovki, Eur. Phys. J. B 8, (1999) 1; Phys. Lett. A 255, 173 (1999); JETP Lett. 69, 91 (1999).ADSCrossRefGoogle Scholar
  24. 24.
    S. Arzumanov et al., Phys. Lett. B 483, 15 (2000).ADSCrossRefGoogle Scholar
  25. 25.
    A. P. Serebrov et al., Phys. Lett. B 605, 72 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    A. Pichlmaier et al., Phys. Lett. B 693, 221 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    H. Abele et al., Phys. Rev. Lett. 88, 211801 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    D. Dubbers and M. G. Schmidt, Rev. Mod. Phys. 83, 1111 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    G. J. Mathews et al., Phys. Rev. D 71, 021302 (2005).ADSCrossRefGoogle Scholar
  30. 30.
    S. Paul, Nucl. Instrum. Methods Phys. Res. 611, 157 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    K. Koga et al., J. Chem. Phys. 109, 4063 (1998).ADSCrossRefGoogle Scholar
  32. 32.
    T. Tadros et al., Adv. Col. Interface Sci. 108, 108 (2004).Google Scholar
  33. 33.
    V. K. Ignatovich, Nucl. Instrum. Methods Phys. Res., Sect. A 440, 709 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. V. Nesvizhevsky
    • 1
  • A. Yu. Voronin
    • 2
  • A. Lambrecht
    • 3
  • S. Reynaud
    • 3
  • E. V. Lychagin
    • 4
  • A. Yu. Muzychka
    • 4
  • A. V. Strelkov
    • 4
  1. 1.Institut Laue-LangevinGrenobleFrance
  2. 2.Lebedev InstituteMoscowRussia
  3. 3.Laboratoire Kastler-Brossel, CNRS, ENS, UPMCParisFrance
  4. 4.Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations