Advertisement

Crystallography Reports

, Volume 57, Issue 6, pp 781–784 | Cite as

Study of LiNbO3 single crystals with a regular domain structure by piezoresponse force microscopy

  • D. A. KiselevEmail author
  • A. S. Bykov
  • R. N. Zhukov
  • V. V. Antipov
  • M. D. Malinkovich
  • Yu. N. Parkhomenko
Real Structure of Crystals

Abstract

Lithium niobate crystals with a regular domain structure have been studied by piezoresponse force microscopy. The period of regular domains and the domain-wall width (w = 45 nm) have been calculated for Z- and Y-cut crystals based on an analysis of two-dimensional images of the domain-structure piezoresponse. It is shown that for the Y-cut crystal, both positive and negative domain boundaries can be identified when recording the lateral component of piezoresponse.

Keywords

Domain Boundary Crystallography Report Lithium Niobate Lithium Niobate Crystal Piezoresponse Force Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. G. Sorokin, V. V. Antipov, and A. A. Blistanov, Ferroelectrics 167, 267 (1995).CrossRefGoogle Scholar
  2. 2.
    A. Feisst and A. Rauber, J. Cryst. Growth 63, 337 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    B. S. Red’kin, D. V. Irzhak, and D. V. Roshchupkin, Izv. Ross. Akad. Nauk, Ser. Fiz. 68(6), 839 (2004).Google Scholar
  4. 4.
    V. Ya. Shur, D. K. Kuznetsov, A. I. Lobov, et al., Phys. Solid State 50, 717 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    A. Kholkin, A. Morozovska, D. Kiselev, et al., Adv. Funct. Mater. 21, 1977 (2011).CrossRefGoogle Scholar
  6. 6.
    A. L. Kholkin, D. A. Kiselev, I. K. Bdikin, et al., Materials 3, Special Issue “Advances in Ferroelectrics & Piezoelectric Materials”, 4860 (2010).Google Scholar
  7. 7.
    M. Fujimure, K. Kintaka, T. Suhara, and H. Nishihara, J. Lightwave Technol. 8, 1360 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    S. Cheng, Y. Zhu, Y. Lu, and N. Ming, Appl. Phys. Lett. 66, 291 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    I. E. Barry, G. W. Ross, P. G. R. Smith, et al., Mater. Lett. 37, 246 (1998).CrossRefGoogle Scholar
  10. 10.
    V. A. Zhirnov, Zh. Eksp. Teor. Fiz. 35(5(11)), 1175 (1958).Google Scholar
  11. 11.
    B. A. Strukov and A. P. Levanyuk, Ferroelectric Phenomena in Crystals (Springer, Geidelberg, 1998).zbMATHCrossRefGoogle Scholar
  12. 12.
    T. Jungk, A. Hoffmann, and E. Soergel, New J. Phys. 10, 013019 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    V. V. Antipov, D. V. Irzhak, D. V. Roshchupkin, and S. A. Shchetinkin, Poverkhnost’: Rentgen., Sinkhrotron. Neitr. Issled., No. 2, 61 (2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • D. A. Kiselev
    • 1
    Email author
  • A. S. Bykov
    • 1
  • R. N. Zhukov
    • 1
  • V. V. Antipov
    • 1
  • M. D. Malinkovich
    • 1
  • Yu. N. Parkhomenko
    • 1
  1. 1.National University of Science and Technology MISISMoscowRussia

Personalised recommendations