Crystallography Reports

, Volume 56, Issue 6, pp 1007–1018 | Cite as

Tubular chains in the structures of natural and synthetic silicates

Structure of Inorganic Compounds

Abstract

Tubular chains in the structures of natural and synthetic silicates have been described and systematized using the theory of graphs and by unfolding the tube topology onto a plane. Eight types of tubular chains have been considered: seven silicon-oxygen chains and one mixed titanosilicate chain; their topological and geometric characteristics are analyzed. It is shown that the presence of large cavities in tubes is generally related to their occupation by large low-valence cations (K+, Cs+, Ba2+, Sr2+, etc.) and water molecules. The overwhelming majority of minerals containing tubular silicate fragments were found in hydrothermal veins of alkaline massifs in Russia and abroad.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. V. Belov, Mineral. Sb. 23(2), 115 (1969).Google Scholar
  2. 2.
    N. V. Belov, Essays on Structural Mineralogy (Nedra, Moscow, 1976) [in Russian].Google Scholar
  3. 3.
    D. Yu. Pushcharovskii, Structural Mineralogy of Silicates and Their Synthetic Analogs (Nedra, Moscow, 1986) [in Russian].Google Scholar
  4. 4.
    G. B. Bokii, Systematics of Natural Silicates. Advances in Science and Technique, Ser.: Crystal Chemistry (VINITI, Moscow, 1997), Vol. 31 [in Russian].Google Scholar
  5. 5.
    F. Liebau, Structural Chemistry of Silicates: Structure, Bonding, and Classification (Springer, New York, 1985; Mir, Moscow, 1988).Google Scholar
  6. 6.
    C. N. R. Rao and A. Govindaraj, Nanotubes and Nanowires (RSC Publishing, Cambridge, 2005).Google Scholar
  7. 7.
    S. Krivovichev, Minerals As Advanced Materials, Part I, Ed. by S. V. Krivovichev (Springer, Berlin, 2008), p. 179.CrossRefGoogle Scholar
  8. 8.
    K. Yada, Acta Crystallogr. 23, 704 (1967).CrossRefGoogle Scholar
  9. 9.
    H. Ogihara, S. Takenaka, I. Yamanaka, et al., Chem. Mater. 18, 996 (2006).CrossRefGoogle Scholar
  10. 10.
    S. T. Bromley, Nano Lett. 4, 1427 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    S. Krivovichev, Rev. Mineral. Geochem. 57, 17 (2005).CrossRefGoogle Scholar
  12. 12.
    S. V. Krivovichev, V. Kahlenberg, I. G. Tananaev, et al., J. Am. Chem. Soc. 127, 1072 (2005).CrossRefGoogle Scholar
  13. 13.
    S. V. Krivovichev, V. Kahlenberg, R. Kaindl, et al., Angew. Chem. Int. Ed. 44, 1134 (2005).CrossRefGoogle Scholar
  14. 14.
    S. V. Krivovichev, I. G. Tananaev, V. Kahlenberg, et al., Radiokhimiya 47, 481 (2005).Google Scholar
  15. 15.
    M. C. Schäfer and T. Schleid, Z. Anorg. Allg. Chem. 633, 1018 (2007).CrossRefGoogle Scholar
  16. 16.
    Ch. Baerlocher, L. B. McCusker, and D. H. Olson, Atlas of Zeolite Framework Types (Elsevier, Amsterdam, 2007).Google Scholar
  17. 17.
    K. Kawamura and J. T. Iiyama, Bull. Mineral. 104, 387 (1981).Google Scholar
  18. 18.
    M. I. Chiragov, Kh. S. Mamedov, and T. Z. Kulieva, Sov. Phys. Crystallogr. 28, 708 (1983).Google Scholar
  19. 19.
    L.-I. Hung, S.-L. Wang, H.-M. Kao, and K.-H. Lii, Inorg. Chem. 42, 4057 (2003).CrossRefGoogle Scholar
  20. 20.
    I. Rozhdestvenskaya, L. Nikishova, and K. Lazebnik, Mineral. Mag. 60, 897 (1996).CrossRefGoogle Scholar
  21. 21.
    I. V. Rozhdestvenskaya, L. V. Nikishova, I. I. Bannova, and K. A. Lazebnik, Mineral. Zh. 10(4), 31 (1988).Google Scholar
  22. 22.
    I. V. Rozhdestvenskaya and M. D. Evdokimov, Dokl. Ross. Akad. Nauk 406, 236 (2006).Google Scholar
  23. 23.
    I. V. Rozhdestvenskaya and L. V. Nikishova, Crystallogr. Rep. 43(4), 589 (1998).ADSGoogle Scholar
  24. 24.
    I. V. Rozhdestvenskaya, I. I. Bannova, L. V. Nikishova, and T. V. Soboleva, Dokl. Ross. Akad. Nauk 398, 524 (2004).Google Scholar
  25. 25.
    P. Brandao, J. Rocha, M. S. Reis, et al., J. Solid State Chem. 182, 253 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    O. V. Karimova and P. C. Burns, Minerals As Advanced Materials, Part I, Ed. by S. V. Krivovichev (Springer, Berlin, 2008), p. 153.Google Scholar
  27. 27.
    D. R. Peacor and M. J. Buerger, Am. Mineral. 47, 539 (1962).Google Scholar
  28. 28.
    U. Kolitsch and E. Tillmanns, Eur. J. Mineral. 16, 143 (2004).CrossRefGoogle Scholar
  29. 29.
    O. I. Siidra and S. V. Krivovichev, Fiz. Khim. Stekla 35, 406 (2009).Google Scholar
  30. 30.
    I. Rozhdestvenskaya, E. Mugnaioli, M. Czank, et al., Mineral. Mag. 74(1), 159 (2010).CrossRefGoogle Scholar
  31. 31.
    S. V. Krivovichev, V. N. Yakovenchuk, T. Armbruster, et al., Am. Mineral. 89, 1561 (2004).Google Scholar
  32. 32.
    M. I. Chiragov, Kh. S. Mamedov, and N. V. Belov, Dokl. Akad. Nauk SSSR 185, 672 (1969).Google Scholar
  33. 33.
    R. K. Rastsvetaeva, K. A. Rozenberg, A. P. Khomyakov, and I. V. Rozhdestvenskaya, Dokl. Ross. Akad. Nauk 391, 203 (2003).Google Scholar
  34. 34.
    J. D. Scott, Can. Mineral. 14, 515 (1976).Google Scholar
  35. 35.
    J. K. Winter and S. Ghose, Am. Mineral. 64, 563 (1979).Google Scholar
  36. 36.
    J. M. M. Pozas, G. Rossi, and V. Tazzoli, Am. Mineral. 60, 471 (1975).Google Scholar
  37. 37.
    V. P. Golovachev, Yu. N. Drozdov, E. A. Kuz’min, and N. V. Belov, Sov. Phys Dokl. 15, 902 (1970).ADSGoogle Scholar
  38. 38.
    Y. Kudoh and Y. Takeuchi, Mineral. J. 9, 349 (1979).CrossRefGoogle Scholar
  39. 39.
    S. Merlino, Am. Mineral. 68, 614 (1983).Google Scholar
  40. 40.
    G. Ferraris and A. Gula, Rev. Mineral. Geochem. 57, 69 (2005).CrossRefGoogle Scholar
  41. 41.
    E. V. Sokolova, Geol. Rudn. Mestorozhd. 52, 457 (2010).Google Scholar
  42. 42.
    S. V. Krivovichev, T. Armbruster, V. N. Yakovenchuk, et al., Eur. J. Mineral. 15, 711 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Department for the Study of Micro- and Nanoporous Structures, Kola Scientific CenterRussian Academy of SciencesApatity, Murmansk oblastRussia

Personalised recommendations