Advertisement

Crystallography Reports

, Volume 57, Issue 1, pp 10–17 | Cite as

Algorithmic crystal chemistry: A cellular automata approach

  • S. V. KrivovichevEmail author
Theory of Crystal Structures

Abstract

Atomic-molecular mechanisms of crystal growth can be modeled based on crystallochemical information using cellular automata (a particular case of finite deterministic automata). In particular, the formation of heteropolyhedral layered complexes in uranyl selenates can be modeled applying a one-dimensional three-colored cellular automaton. The use of the theory of calculations (in particular, the theory of automata) in crystallography allows one to interpret crystal growth as a computational process (the realization of an algorithm or program with a finite number of steps).

Keywords

Cellular Automaton Crystallography Report Cellular Automaton Finite Automaton Input String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. N. Eliseev, Yu. V. Sachkov, and N. V. Belov, Flows of Concepts and Regularities in the Development of Natural Science (Nauka, Leningrad, 1982) [in Russian], p. 171.Google Scholar
  2. 2.
    B. N. Delone, N. P. Dolbilin, M. I. Shtogrin, and R. V. Galiulin, Dokl. Akad. Nauk SSSR, 227, 19 (1976).MathSciNetGoogle Scholar
  3. 3.
    N. P. Dolbilin, Dokl. Akad. Nauk SSSR, 230, 516 (1976).MathSciNetGoogle Scholar
  4. 4.
    N. Dolbilin and D. Schattschneider, Field Institute Monographs 10, 193 (1998).MathSciNetGoogle Scholar
  5. 5.
    N. Dolbilin and D. Schattschneider, Field Institute Monographs 10, 207 (1998).MathSciNetGoogle Scholar
  6. 6.
    N. P. Dolbilin, J. C. Lagarias, and M. Senechal, Discrete Comput. Geom. 20, 477 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    W. Kossel, Annal. Phys. 21, 457 (1934).ADSCrossRefGoogle Scholar
  8. 8.
    D. J. Gates, J. Chem. Soc. Faraday Trans. 93, 4223 (1997).CrossRefGoogle Scholar
  9. 9.
    F. C. Frank, Discuss. Faraday Soc. 5, 48 (1949).CrossRefGoogle Scholar
  10. 10.
    R. Brent and M. W. Anderson, Angew. Chem. Int. Ed. 47, 5327 (2008).CrossRefGoogle Scholar
  11. 11.
    P. Cubillas and M. W. Anderson, Zeolites and Catalysts. Synthesis, Reactions and Applications, Ed. by J. Cejka et al. (Wiley, Weinheim, 2010), Vol. 1, p. 1.CrossRefGoogle Scholar
  12. 12.
    H. Coelfen and M. Antonietti, Mesocrystals and Nonclassical Crystallization (Wiley, Chichester, 2008).CrossRefGoogle Scholar
  13. 13.
    J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory, Languages and Computation (Wiley, Addisson-Wesley, 2001).zbMATHGoogle Scholar
  14. 14.
    T. Toffoli and N. Margolus, Cellular Automata Machines (MIT Press, Boston, 1987).Google Scholar
  15. 15.
    A. Ilachinski, Cellular Automata: A Discrete Universe (World Scientific, Singapore, 2001).zbMATHGoogle Scholar
  16. 16.
    S. Wolfram, A New Kind of Science (Wolfram Media, Urbana, 2002).zbMATHGoogle Scholar
  17. 17.
    A. Mackay, Phys. Bull. 1976, 495 (1976).Google Scholar
  18. 18.
    S. Krivovichev, Acta Crystallogr. A 60, 257 (2004).MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    V. Shevchenko, S. Krivovichev, and A. L. Mackay, Fiz. Khim. Stekla 36, 1 (2010).Google Scholar
  20. 20.
    S. V. Krivovichev, Eur. J. Inorg. Chem. 2010, 2594 (2010).CrossRefGoogle Scholar
  21. 21.
    V. Shevchenko and S. Krivovichev, Struct. Chem. 19, 571 (2008).CrossRefGoogle Scholar
  22. 22.
    S. V. Krivovichev and P. C. Burns, Structural Chemistry of Inorganic Actinide Compounds, Ed. by S. V. Krivovichev et al. (Elsevier, Amsterdam, 2008), p. 95.Google Scholar
  23. 23.
    S. V. Krivovichev, Crystallogr. Rev. 10, 185 (2004).CrossRefGoogle Scholar
  24. 24.
    S. V. Krivovichev, Structural Crystallography of Inorganic Oxysalts (Oxford Univ. Press, Oxford, 2008).Google Scholar
  25. 25.
    E. F. Moore, Proc. Symp. Appl. Math. 14, 17 (1962).Google Scholar
  26. 26.
    K. Sutner, Complex Systems 5, 19 (1991).MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations