Crystallography Reports

, 56:221 | Cite as

Modeling of cluster formation in nonlinear optical lithium niobate crystal

  • V. M. Voskresenskii
  • O. R. Starodub
  • N. V. Sidorov
  • M. N. Palatnikov
  • B. N. Mavrin
Structure of Inorganic Compounds


The processes occurring during the formation of energetically equilibrium oxygen-octahedral clusters in the ferroelectric phase of lithium niobate (LiNbO3) crystal, have been qualitatively modeled in dependence of the phase composition. The modeling results are compared with the data obtained within vacancy models. It is shown that the cluster structure constructed along the crystallographic Y axis is most ordered, while that constructed along the polar Z axis is least ordered. The largest spread in the ratio R = Li/Nb is observed in the direction of the Z axis.


Crystallography Report Lithium Niobate Oxygen Octahedra Cation Sublattice Lithium Niobate Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Yu. S. Kuz’minov, V. V. Osiko, and A. M. Prokhorov, Kvantovaya Élektron. (Moscow) 7(8), 1621 (1980).Google Scholar
  2. 2.
    M. N. Palatnikov, N. V. Sidorov, and V. T. Kalinnikov, Ferroelectric Solid Solutions Based on Niobium and Tantalum Oxide Compounds (Nauka, St. Petersburg, 2001) [in Russian], p. 302.Google Scholar
  3. 3.
    N. V. Cidorov, T. R. Volk, B. N. Mavrin, and V. T. Kalinnikov, Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum, Polaritons (Nauka, Moscow, 2003), p. 255.Google Scholar
  4. 4.
    Yu. S. Kuz’minov, Electro-Optical and Nonlinear Optical Lithium Niobate Crystal (Nauka, Moscow, 1987) [in Russian], p. 264.Google Scholar
  5. 5.
    T. Volk and M. Wohlecke, Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching (Springer, Berlin, 2008), p. 250.Google Scholar
  6. 6.
    H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, and O. F. Schirmer, Phys. Rev. B 40(17), 11909 (1989).CrossRefADSGoogle Scholar
  7. 7.
    A. P. Wilkinson, A. K. Cheetham, and R. H. Jarman, J. Appl. Phys. 74(5), 3080 (1993).CrossRefADSGoogle Scholar
  8. 8.
    S. C. Abrahams and P. March, Acta Crystallogr. B 42, 61 (1986).CrossRefGoogle Scholar
  9. 9.
    N. V. Sidorov, M. N. Palatnikov, and V. T. Kalinnikov, in Proc. Int. Conf. “Optics of Crystals and Nanostructures”, Khabarovsk, 2008, p. 62.Google Scholar
  10. 10.
    S. F. Burachas, A. A. Vasil’ev, M. S. Ippolitov, et al., Kristallografiya 52(6), 1124 (2007) [Crystallogr. Rep. 52 (6), 1088 (2007)].Google Scholar
  11. 11.
    E. G. Maksimov, V. I. Zinenko, and N. G. Zamkova, Usp. Fiz. Nauk 174(11), 1145 (2004).CrossRefGoogle Scholar
  12. 12.
    N. Zotov, H. Boysen, F. Frey, et al., J. Phys. Chem. Solids 55(2), 145 (1994).CrossRefADSGoogle Scholar
  13. 13.
    N. Iyi, K. Kitamura, F. Izumi, et al., J. Solid State Chem. 101, 340 (2002).CrossRefADSGoogle Scholar
  14. 14.
    E. P. Fedorova, L. A. Aleshina, N. V. Sidorov, et al., Neorg. Mater. 46(2), 247 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. M. Voskresenskii
    • 1
  • O. R. Starodub
    • 1
  • N. V. Sidorov
    • 1
  • M. N. Palatnikov
    • 1
  • B. N. Mavrin
    • 2
  1. 1.Institute of Chemistry and Technology of Rare Earth Elements and Mineral Raw Materials, Kola Science CenterRussian Academy of SciencesApatity, Murmansk oblastRussia
  2. 2.Institute of SpectroscopyRussian Academy of SciencesTroitsk, Moscow oblastRussia

Personalised recommendations