Advertisement

Crystallography Reports

, Volume 55, Issue 7, pp 1106–1115 | Cite as

Complementarity of real-time neutron and synchrotron radiation structural investigations in molecular biology

  • V. L. Aksenov
  • M. A. Kiselev
Diffraction and Scattering of Ionizing Radiations

Abstract

General problems of the complementarity of different physical methods and specific features of the interaction between neutron and matter and neutron diffraction with respect to the time of flight are discussed. The results of studying the kinetics of structural changes in lipid membranes under hydration and self-assembly of the lipid bilayer in the presence of a detergent are reported. The possibilities of the complementarity of neutron diffraction and X-ray synchrotron radiation and developing a free-electron laser are noted.

Keywords

Neutron Diffraction DPPC Crystallography Report Small Angle Neutron Scattering Pulse Neutron Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. N. Serdyuk, N. R. Zaccai, and J. Zaccai, Methods in Molecular Biophysics. Structure, Dynamics, Function (Cambridge Univ. Press, Cambridge, 2007), p. 1120.Google Scholar
  2. 2.
    V. L. Aksenov and A. M. Balagurov, Usp. Fiz. Nauk 166(9), 955 [Phys. Usp. 39 (9), 897 (1996)].Google Scholar
  3. 3.
    P. A. Egelstaff, in Proc. Symposium on Neutron TOF Method, Saclay, France, 1961, p. 70.Google Scholar
  4. 4.
    B. Buras et. al., in Proc. Third Intern. Conf. on the Peaceful Uses of Atomic Energy, Geneva, 1964 (United Nations, New York, 1965), Vol. VII, p. 447.Google Scholar
  5. 5.
    I. M. Frank, Nature (1972).Google Scholar
  6. 6.
    B. Buras et. al., Nucl. Instrum. Methods 77, 13 (1970).CrossRefADSGoogle Scholar
  7. 7.
    G. M. Mironova, JINR Reports no. P13-88-326 (Dubna, 1988).Google Scholar
  8. 8.
    J. F. Nagle, R. Zhang, S. Tristram-Nagle, W. Sun, and H. Petrache, Biophys. J. 70, 1419 (1996).CrossRefADSGoogle Scholar
  9. 9.
    A. M. Balagurov, V. I. Gordelsh, and L. S. Yaguzhinskiĭ, Biofizika 31, 1004 (1986).Google Scholar
  10. 10.
    N. Yu. Ryabova, M. A. Kiselev, A. I. Beskrovnyĭ, and A. M. Balagurov, Fiz. Tverd. Tela (2009).Google Scholar
  11. 11.
    D. L. Worcester and N. P. Franks, J. Mol. Biol. 100, 359 (1976).CrossRefGoogle Scholar
  12. 12.
    B. P. Schoenborn, Biochim. Biophys. Acta 457, 41 (1976).Google Scholar
  13. 13.
    G. Büldt, H.U. Gaily, A. Seelig, and J. Seelig, Nature 271, 182 (1978).CrossRefADSGoogle Scholar
  14. 14.
    M. A. Kiselev, D. Lombardo, P. Lesieur, A. M. Kisselev, S. Borbely, T. N. Simonova, and L. I. Barsukov, Chem. Phys. 345, 173 (2008).CrossRefADSGoogle Scholar
  15. 15.
    P. Lesieur, M. A. Kiselev, L. I. Barsukov, and D. Lombardo, J. Appl. Crystallogr. 33, 623 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Russian Research Center Kurchatov InstituteMoscowRussia
  2. 2.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia

Personalised recommendations