Crystallography Reports

, Volume 55, Issue 4, pp 710–715 | Cite as

Formation of needlelike crystallites during growth of diamond films by chemical vapor deposition

  • P. G. Kopylov
  • A. N. Obraztsov
  • P. V. Shvets
Crystal Growth


Diamond polycrystalline films have been grown by chemical vapor deposition from a hydrogenmethane mixture. The phase composition and structure of the films were studied using Raman spectroscopy, electron microscopy, and thermogravimetry. It is found that, upon heating in air, the oxidation of the carbon material forming the films occurs at significantly different temperatures, depending on the degree of its order and the crystallite size. This difference is used for selective oxidation of the least ordered fine-grained component of the films. The material obtained by this selective oxidation of the films consists of diamond crystallites shaped like regular micrometer-sized tetragonal pyramids with a radius of tip curvature of several nanometers.


Chemical Vapor Deposition Crystallography Report Diamond Film Chemical Vapor Deposition Diamond Typical Scanning Electron Microscope Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. E. Field, The Properties of Natural and Synthetic Diamond (Academic, London, 1997).Google Scholar
  2. 2.
    Handbook of Industrial Diamonds and Diamond Films, Ed. by M. A. Prelas et al. (Marcel Dekker, New York, 1998).Google Scholar
  3. 3.
    R. E. Clausing, L. Heatherly, L. L. Horton, et al., Diamond Relat. Mater. 1, 411 (1992).CrossRefGoogle Scholar
  4. 4.
    C. Wild, R. Kohl, N. Herres, et al., Diamond Relat. Mater. 3, 373 (1994).CrossRefGoogle Scholar
  5. 5.
    B. V. Spitsyn, Growth of Diamond Films from the Vapour Phase. Handbook of Crystal Growth, Vol. 3, Ed. by D. T. J. Hurtle (Elsevier, Amsterdam, 1994), p. 711.Google Scholar
  6. 6.
    M. Wolfer, J. Biener, B. El-dasher, et al., Diamond Relat. Mater. 11, 34 (2008).Google Scholar
  7. 7.
    A. N. Obraztsov, A. A. Zolotukhin, A. O. Ustinov, et al., Diamond Relat. Mater. 12, 917 (2003).CrossRefGoogle Scholar
  8. 8.
    A. A. Zolotukhin, A. N. Obraztsov, A. O. Ustinov, and A. P. Volkov, Zh. Eksp. Teor. Fiz. 124, 1291 (2003) [JETP 97, 1154 (2003)].Google Scholar
  9. 9.
    H. Kuzmany, R. Pfeiffer, N. Salk, et al., Carbon 42, 911 (2004).CrossRefGoogle Scholar
  10. 10.
    A. V. Khomich, P. I. Perov, V. I. Polyakov, et al., in Proc. Third Int. Conf. “Application of Diamond Films and Related Materials,” Ed. by A. Feldman et al. (Government Printing Office, Washington, 1995).Google Scholar
  11. 11.
    B. R. Stanmore, J. F. Brilhac, and P. Gilot, Carbon 39, 2247 (2001).CrossRefGoogle Scholar
  12. 12.
    L. Xiaowei, R. Jean-Charles, and Y. Suyuan, Nucl. Eng. Des. 227, 273 (2004).CrossRefGoogle Scholar
  13. 13.
    S. Osswald, M. Havel, V. Mochalin, et al., Diamond Relat. Mater. 17, 1122 (2008).CrossRefGoogle Scholar
  14. 14.
    M. Hanfland and K. Syassen, J. Appl. Phys. 57, 2752 (1984).CrossRefADSGoogle Scholar
  15. 15.
    P. W. May, Science 319, 148 (2008).CrossRefGoogle Scholar
  16. 16.
    A. Kruger, Adv. Mater. 20, 2445 (2008).CrossRefADSGoogle Scholar
  17. 17.
    I. I. Vlasov, O. I. Lebedev, V. G. Ralchenko, et al., Adv. Mater. 19, 4058 (2007).CrossRefGoogle Scholar
  18. 18.
    J.-F. Hochedez, E. Verwichte, P. Bergonzo, et al., Phys. Status Solidi A 181, 141 (2000).CrossRefADSGoogle Scholar
  19. 19.
    I. V. Vlasov, A. S. Barnard, V. C. Ralchenko, et al., Adv. Mater. 20, 1 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • P. G. Kopylov
    • 1
  • A. N. Obraztsov
    • 1
  • P. V. Shvets
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations