Advertisement

Crystallography Reports

, Volume 53, Issue 5, pp 853–857 | Cite as

Near-electrode processes in lanthanum-gallium tantalate crystals

  • O. A. Buzanov
  • E. V. ZabelinaEmail author
  • N. S. Kozlova
  • T. B. Sagalova
Physical Properties of Crystals

Abstract

The near-electrode processes on the surfaces of the polar cuts of lanthanum-gallium tantalate crystals grown in different atmospheres were investigated. The temperature dependences of short-circuit currents in the temperature range 20–700°C were measured and phase analysis of the sample surfaces after the temperature tests were performed. It is shown that short-circuit currents arise on the surfaces of polar cuts with identical conducting coatings without preliminary polarization. These currents are caused by the generation of intrinsic emf as a result of the electrochemical reactions on opposite polar cut surfaces coming in contact with a conducting coating. It is established that the crystal growth atmosphere and the conducting coating material significantly affect the temperature dependences of short-circuit currents.

PACS numbers

77.84.Bw 82.45.Un 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Shimamura, H. Takeda, T. Kohno, et al., J. Cryst. Growth 163, 388 (1996).CrossRefADSGoogle Scholar
  2. 2.
    H. Takeda, S. Tanaka, J. Izukawa, et al., in Proc. 2005 Ultrasonic Symp. IEEE. Proc. (2005), Vol. 1,Iss. 18–21, p. 560.CrossRefGoogle Scholar
  3. 3.
    I. A. Andreev, Zh. Tekh. Fiz. 76(6), 80 (2006) [Tech. Phys. 51, 758 (2006)].Google Scholar
  4. 4.
    V. B. Grouzinenko and V. V. Bezdelkin, Proc. IEEE Int. Freq. Control Symp., p. 707 (1992).Google Scholar
  5. 5.
    M. Kumatoriya, H. Sato, J. Nakanishi, et al., J. Cryst. Growth 229, 289 (2001).CrossRefADSGoogle Scholar
  6. 6.
    T. Fukuda, H. Takeda, H. Kawanaka, et al., Proc. IEEE Int. Freq. Control Symp., p. 315 (1998).Google Scholar
  7. 7.
    B. V. Grinev, M. F. Dubovik, and A. V. Tolmachev, Optical Single Crystals of Complex Oxide Compounds (Institute of Single Crystals, Kharkov, 2002) [in Russian].Google Scholar
  8. 8.
    J. Bohm, R. Heimann, M. Hegst, et al., J. Cryst. Growth 204, 128 (1999).CrossRefADSGoogle Scholar
  9. 9.
    K. Shimamura, H. Takeda, T. Kohno, et al., J. Cryst. Growth 163, 388 (1996).CrossRefADSGoogle Scholar
  10. 10.
    M. Honal, E. Born, R. Fachberger, et al., Proc. IEEE Int. Freq. Control Symp., p. 113 (2000).Google Scholar
  11. 11.
    A. A. Blistanov, N. S. Kozlova, and V. V. Geras’kin, Ferroelectrics 198, 61 (1997).CrossRefGoogle Scholar
  12. 12.
    Yu. A. Gorokhovatskiĭ and G. A. Bordovskiĭ, Thermally Activated Current Spectroscopy of High-Resistance Semiconductors and Insulators (Nauka, Moscow, 1991) [in Russian].Google Scholar
  13. 13.
    V. M. Chebotin and M. V. Perfil’ev, Electrochemistry of Solid Electrolytes (Khimiya, Moscow, 1978) [in Russian].Google Scholar
  14. 14.
    J. C. Burfoot and G. W. Taylor, Polar Dielectrics and Their Applications (Macmillan, London, 1979; Mir, Moscow, 1981).Google Scholar
  15. 15.
    Yu. S. Kuz’minov, Ferroelectric Crystals for Laser Beam Control (Nauka, Moscow, 1982) [in Russian].Google Scholar
  16. 16.
    A. A. Blistanov, N. S. Kozlova, and V. V. Geras’kin, Phenomenon of Electrochemical Decomposition of Polar Dielectric Crystals. Scientific Discoveries: Russian Academy of Natural Sciences (Moscow, 2002), p. 20 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • O. A. Buzanov
    • 1
  • E. V. Zabelina
    • 2
    Email author
  • N. S. Kozlova
    • 2
  • T. B. Sagalova
    • 2
  1. 1.OAO Fomos MaterialsMoscowRussia
  2. 2.Moscow State Institute of Steel and AlloysMoscowRussia

Personalised recommendations