Crystallography Reports

, Volume 53, Issue 4, pp 573–578 | Cite as

Threshold concentrations in zinc-doped lithium niobate crystals and their structural conditionality

  • T. S. Chernaya
  • T. R. Volk
  • I. A. Verin
  • V. I. Simonov
Structure of Inorganic Compounds

Abstract

On the basis of precise X-ray diffraction study of lithium niobate single crystals of congruent composition and four zinc-doped (at 2.8, 5.2, 7.6, and 8.2 mol %) crystals, structural conditionality of the threshold concentrations of the dopant has been established. At these concentrations, the mechanism of zinc incorporation into crystal changes. As the zinc concentration increases, this element first substitutes excess niobium, localized in lithium positions, with a simultaneous decrease in the number of vacancies in these positions. Then zinc substitutes lithium with formation of new lithium vacancies. When a certain limit on the number of vacancies is reached, zinc begins to substitute niobium in its main positions. This process is naturally accompanied by a decrease in the number of vacancies to their complete disappearance and formation of a self-compensating crystal. The character of the dependence of the crystal physical properties on the dopant concentration changes specifically when the impurity concentration passes through the threshold values.

PACS numbers

61.10.Nz 61.72.Ji 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. D. Megaw, Acta Crystallogr. 7, 187 (1954).CrossRefGoogle Scholar
  2. 2.
    Y. Shiozaki and T. Mitsui, J. Phys. Chem. Solids 24, 1057 (1963).CrossRefADSGoogle Scholar
  3. 3.
    S. C. Abrahams, J. M. Reddy, and J. L. Bernstein, J. Phys. Chem. Solids 27, 997 (1966).CrossRefADSGoogle Scholar
  4. 4.
    S. C. Abrahams, W. C. Hamilton, and J. M. Reddy, J. Phys. Chem. Solids 27, 1013 (1966).CrossRefADSGoogle Scholar
  5. 5.
    S. C. Abrahams, H. J. Levinstein, and J. M. Reddy, J. Phys. Chem. Solids 27, 1019 (1966).CrossRefADSGoogle Scholar
  6. 6.
    P. Lerner, C. Legras, and J. P. Dumas, J. Cryst. Growth 3/4, 231 (1968).CrossRefADSGoogle Scholar
  7. 7.
    J. R. Carruthers, G. E. Peterson, M. Grasso, and P. M. Bridenbaugh, J. Appl. Phys. 42, 1846 (1971).CrossRefADSGoogle Scholar
  8. 8.
    P. K. Gallagher and H. M. O’Bryan, J. Am. Ceram. Soc. 68, 147 (1985).CrossRefGoogle Scholar
  9. 9.
    K. Nassau and M. E. Lines, J. Appl. Phys. 41, 533 (1970).CrossRefADSGoogle Scholar
  10. 10.
    S. C. Abrahams and P. Marsh, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 42, 61 (1986).CrossRefGoogle Scholar
  11. 11.
    Rauber A. Current Topics in Materials Science, Ed. by E. Kaldis (North-Holland, Amsterdam, 1978), Vol. 1, p. 481.Google Scholar
  12. 12.
    N. Zotov, H. Boysen, F. Frey, et al., J. Phys. Chem. Solids 55(2), 145 (1994).CrossRefADSGoogle Scholar
  13. 13.
    N. Iyi, K. Kitamura, F. Izumi, et al., J. Solid State Chem. 101, 340 (1992).CrossRefADSGoogle Scholar
  14. 14.
    O. F. Schirmer, O. Thiemann, and M. Woehlecke, J. Phys. Chem. Solids 52, 185 (1991).CrossRefADSGoogle Scholar
  15. 15.
    T. Volk, M. Woehlecke, N. Rubinina, et al., Ferroelectrics 183, 291 (1996).CrossRefGoogle Scholar
  16. 16.
    F. Abdi, M. Aillerie, M. Fontana, et al., Appl. Phys. B 68, 795 (1999).CrossRefADSGoogle Scholar
  17. 17.
    B. C. Grabmaier and F. Otto, J. Cryst. Growth 79, 682 (1986).CrossRefADSGoogle Scholar
  18. 18.
    T. S. Chernaya, B. A. Maksimov, T. R. Volk, et al., Pis’ma Zh. Éksp. Teor. Fiz. 73(2), 110 (2001) [JETP Lett. 73, 103 (2001)].Google Scholar
  19. 19.
    N. Iyi, K. Kitamura, Y. Yajima, et al., J. Solid State Chem. 118, 148 (1995).CrossRefADSGoogle Scholar
  20. 20.
    S. Sulyanov, B. Maximov, T. Volk, et al., Appl. Phys. A: Mater. Sci. Process 74(Suppl.), 1031 (2002).CrossRefADSGoogle Scholar
  21. 21.
    T. Volk, B. Maximov, S. Sulyanov, et al., Opt. Mater. 23, 229 (2003).CrossRefADSGoogle Scholar
  22. 22.
    Z. I. Ivanova, A. I. Kovrigin, G. V. Luchinskiĭ, et al., Kvantovaya Élektron. (Moscow) 7, 1013 (1980).Google Scholar
  23. 23.
    U. Schlarb, M. Woehlecke, B. Gather, et al., Opt. Mater. 4, 791 (1995).CrossRefGoogle Scholar
  24. 24.
    M. U. Zucker, E. Perentaler, W. F. Kuns, et al., J. Appl. Crystallogr. 16, 358 (1983).CrossRefGoogle Scholar
  25. 25.
    B. J. Becker and Ph. Coppens Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 30, 129 (1974).CrossRefGoogle Scholar
  26. 26.
    L. A. Muradyan, S. F. Radaev, and V. I. Simonov, Methods of Structural Analysis (Nauka, Moscow, 1989) [in Russian].Google Scholar
  27. 27.
    N. V. Sidorov, T. R. Volk, B. N. Mavrin, and V. T. Kalinnikov, Lithium Niobate: Defects, Photorefraction, Oscillation Spectrum, Polaritons (Nauka, Moscow, 2003), p. 255 [in Russian].Google Scholar
  28. 28.
    M. D. Fontana, K. Laabidi, B. Jannot, et al., Solid State Commun. 92, 827 (1994).CrossRefADSGoogle Scholar
  29. 29.
    F. Abdi, M. Aillierie, P. Bourson, et al., J. Appl. Phys. 84, 2251 (1998).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • T. S. Chernaya
    • 1
  • T. R. Volk
    • 1
  • I. A. Verin
    • 1
  • V. I. Simonov
    • 1
  1. 1.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia

Personalised recommendations