Advertisement

Crystallography Reports

, Volume 52, Issue 4, pp 639–646 | Cite as

Structural chemistry of peroxo compounds of group VI transition metals: I. Peroxo complexes of chromium (a review)

  • V. S. Sergienko
Structure of Inorganic Compounds

Abstract

The specific features revealed in the structure of the d 3 Cr(III), d 2 Cr(IV), d 1Cr(V), and d 0 Cr(VI) peroxo complexes with the ratios M:O2 = 1:1, 1:2, and 1:4 are considered. It is noted that, in eleven compounds of the general formula Cr(O2)nOm A p (n = 1, 2, 4; m = 0, 1; p = 0–4), the metal atoms can be in four oxidations states: +3 (d 3), +4 (d 4), +5 (d 1), and +6 (d 0). This property distinguishes chromium peroxo compounds from molybdenum and tungsten dioxygen complexes, which, with one exception, are represented by the d 0 M(VI) compounds.

PACS numbers

61.66.Fn 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. I. Vol’nov, Peroxo Complexes of Chromium, Molybdenum, and Tungsten (Nauka, Moscow, 1989) [in Russian].Google Scholar
  2. 2.
    M. H. Dickman and M. T. Pope, Chem. Rev. 94(3), 569 (1994).CrossRefGoogle Scholar
  3. 3.
    V. S. Sergienko, Russ. J. Inorg. Chem. 48(Suppl. 1), 55 (2003).MathSciNetGoogle Scholar
  4. 4.
    V. S. Sergienko, Kristallografiya 49(3), 467 (2004) [Crystallogr. Rep. 49 (3), 401 (2004)].Google Scholar
  5. 5.
    V. S. Sergienko, Kristallografiya 49(6), 1003 (2004) [Crystallogr. Rep. 49 (6), 907 (2004)].Google Scholar
  6. 6.
    V. S. Sergienko, Rus. J. Inorg. Chem. 49(Suppl. 1) (2004).Google Scholar
  7. 7.
    F. H. Allen, Acta Crystallogr., Sect. B: Struct. Sci. 58(2), 380 (2002).CrossRefGoogle Scholar
  8. 8.
    Inorganic Crystal Structure Database: Release 2003/2 (Fachinformationszentrum Karlsruhe (FIZ Karlsruhe), Germany and US National Institute of Standards and Technology (NIST), Gaithersburg, MD, United States, 2003).Google Scholar
  9. 9.
    K. Qin, C. D. Incarvito, A. L. Rheingold, and K. H. Theopold, Angew. Chem., Int. Ed. Engl. 41, 2333 (2002).CrossRefGoogle Scholar
  10. 10.
    R. Stomberg, Ark. Kemi 24(14), 283 (1965).Google Scholar
  11. 11.
    R. Stomberg, Ark. Kemi 22(1), 49 (1964).Google Scholar
  12. 12.
    E. McLaren and L. Helmholz, J. Phys. Chem. 63, 1279 (1959).CrossRefGoogle Scholar
  13. 13.
    R. Stomberg, Ark. Kemi 23(5), 401 (1965).Google Scholar
  14. 14.
    R. Stomberg, Ark. Kemi 24(2), 47 (1965).Google Scholar
  15. 15.
    C. M. Ramsey, B. Cage, P. Nguyen, et al., Chem. Mater. 15(1), 92 (2003).CrossRefGoogle Scholar
  16. 16.
    L. J. de Jongh and A. R. Miedema, Adv. Phys. 23(1), 17 (1974).CrossRefGoogle Scholar
  17. 17.
    I. A. Wilson, Ark. Kemi, Mineral. Geol. 15(5), 1 (1942).Google Scholar
  18. 18.
    R. Stomberg, Acta Chem. Scand. 14, 441 (1960).Google Scholar
  19. 19.
    J. D. Swalen and J. A. Ibers, J. Chem. Phys. 37(1), 17 (1962).CrossRefADSGoogle Scholar
  20. 20.
    J. A. Anysas, J. Chem. Phys. 40, 1205 (1964).CrossRefADSGoogle Scholar
  21. 21.
    R. Stomberg, Acta Chem. Scand. 17, 1563 (1963).Google Scholar
  22. 22.
    J. Fisher, A. Veillard, and R. Weiss, Theor. Chim. Acta 24(4), 317 (1972).CrossRefGoogle Scholar
  23. 23.
    R. M. Wood, K. A. Abbond, R. C. Palenik, and G. J. Palenik, Inorg. Chem. 39(10), 2065 (2000).CrossRefGoogle Scholar
  24. 24.
    L. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, NY, 1960), p. 352.Google Scholar
  25. 25.
    J. L. Hoard and J. V. Silverton, Inorg. Chem. 2, 235 (1963).CrossRefGoogle Scholar
  26. 26.
    R. Stomberg, Ark. Kemi 22(1), 29 (1964).Google Scholar
  27. 27.
    R. Stomberg and I.-B. Ainalem, Acta Chem. Scand. 22(5), 1439 (1968).CrossRefGoogle Scholar
  28. 28.
    R. Stomberg, Ark. Kemi 24(2), 111 (1965).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • V. S. Sergienko
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations