Crystallography Reports

, Volume 52, Issue 2, pp 191–198

Theory of X-ray diffraction from a nonideal crystal with a trapezoidal cross section

  • V. I. Punegov
  • S. I. Kolosov
Diffraction and Scattering of Ionizing Radiations

Abstract

The theory of X-ray diffraction from a nonideal lateral crystal with a trapezoidal cross section in the Born (kinematical) approximation has been developed. Distortions of the crystal structure are caused by continuous (nonrandom) lattice strains and randomly distributed defects. Continuous lattice strain is a combination of elastic bending of atomic planes and a linear variation in the interplanar spacing with increasing distance from the crystal surface. Within the method of triple-crystal X-ray diffraction, numerical simulation of the angular intensity distribution of coherent and diffuse scattering has been performed for different continuous and random lattice strains in the lateral and vertical directions.

PACS numbers

61.10.Dp 68.65.La 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Authier, Dynamical Theory of X-ray Diffraction (Oxford Univ. Press, New York, 2001).Google Scholar
  2. 2.
    T. Baumbach, D. Lubbert, and M. Gailhanou, J. Appl. Phys. 87(8), 3744 (1999).CrossRefADSGoogle Scholar
  3. 3.
    K. Nakashima and Y. Kawaguchi, J. Appl. Phys. 90(7), 3255 (2001).CrossRefADSGoogle Scholar
  4. 4.
    L. De Caro, P. Sciacovelli, and L. Tapfer, Appl. Phys. Lett. 64(1), 34 (1994).CrossRefADSGoogle Scholar
  5. 5.
    V. I. Punegov and V. V. Kanev, Poverkhnost, No. 1, 15 (2004).Google Scholar
  6. 6.
    S. I. Kolosov and V. I. Punegov, Kristallografiya 50(3), 401 (2005) [Crystallogr. Rep. 50, 357 (2005)].Google Scholar
  7. 7.
    Ya. I. Nesterets and V. I. Punegov, Acta Crystallogr., Sect. A: Found. Crystallogr. 56(6), 540 (2000).CrossRefGoogle Scholar
  8. 8.
    A. Shuster, Introduction to Theoretical Optics (ONTI, Leningrad, 1935) [in Russian].Google Scholar
  9. 9.
    A. V. Kolpakov and V. I. Punegov, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron. 27(5), 85 (1986).Google Scholar
  10. 10.
    Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. A. Stegun, 2nd ed. (Dover, New York, 1971; Nauka, Moscow, 1979).Google Scholar
  11. 11.
    V. I. Punegov, Zh. Tekh. Fiz. 61(12), 71 (1991) [Sov. Tech. Phys. 36, 1369 (1991)].Google Scholar
  12. 12.
    N. Kato, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 36, 763 (1980).CrossRefGoogle Scholar
  13. 13.
    V. Holy, K. Wolf, M. Kastner, et al., J. Appl. Crystallogr. 27, 551 (1994).CrossRefGoogle Scholar
  14. 14.
    Th. Wiebach, M. Schmidbauer, M. Hanke, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 61, 5571 (2000).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • V. I. Punegov
    • 1
    • 2
  • S. I. Kolosov
    • 2
  1. 1.Komi Research Center, Ural DivisionRussian Academy of SciencesSyktyvkarKomi Republic Russia
  2. 2.Syktyvkar State UniversitySyktyvkarKomi Republic Russia

Personalised recommendations