Skip to main content
Log in

Optical Identification of Candidates for Active Galactic Nuclei Detected by the Mikhail Pavlinsky ART-XC Telescope Onboard the SRG Observatory during an All-Sky X-ray Survey

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We present the results of our identification of eight objects from the preliminary catalogue of X-ray sources detected in the 4–12 keV energy band by the Mikhail Pavlinsky ART-XC telescope onboard the SRG observatory during the first all-sky survey. Three of them (SRGA J005751.0+210846, SRGA J\(014157.0{-}032915\), SRGA J232446.8+440756) have been discovered by the ART-XC telescope, while five have already been known previously as X-ray sources, but their nature has remained unestablished. The last five sources have also been detected in soft X-rays by the eROSITA telescope of the SRG observatory. Our optical observations have been carried out at the 1.6-m AZT-33IK telescope of the Sayan Observatory and the 1.5-m Russian–Turkish telescope (RTT-150). All of the investigated objects have turned out to be active galactic nuclei (AGNs) at redshifts from 0.019 to 0.283. Six of them are Seyfert 2 galaxies (including one Seyfert 1.9 galaxy), one (SRGA J005751.0+210846) is a ‘‘hidden’’ AGN (in an edge-on galaxy), and one (SRGA J224125.9+760343) is a narrow-line Seyfert 1 galaxy. The latter object is characterized by a high X-ray luminosity (\({\sim}(2-13)\times 10^{44}\) erg s\({}^{-1}\) in the 4–12 keV band) and, according to our black hole mass estimate (\({\sim}2\times 10^{7}M_{\odot}\)), an accretion rate close to the Eddington limit. All three AGNs discovered by the ART-XC telescope (which are not detected by the eROSITA telescope) are characterized by a high absorption column density (\(N_{\textrm{H}}\gtrsim 3\times 10^{23}\) cm\({}^{-2}\)). The results obtained confirm the expectations that the ART-XC telescope is an efficient instrument in searching for heavily obscured and other interesting AGNs in the nearby (\(z\lesssim 0.3\)) Universe. The SRG sky survey will last for another 3 years or more, which must allow many such objects to be discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Russian scientists are responsible for processing the data from the eROSITA telescope (Germany) in this part of the sky.

  2. https://heasarc.gsfc.nasa.gov/xanadu/xspec/.

  3. http://hea.iki.rssi.ru/rtt150/en/index.php?page=tfosc.

  4. https://www.eso.org/sci/observing/tools/standards/spectra/stanlis.html.

  5. http://iraf.noao.edu/.

  6. http://ckp-rf.ru/ckp/3056/.

REFERENCES

  1. K. N. Abazajian, J. K. Adelman-McCarthy, M. A. Agüeros, S. S. Allam, P. C. Allende Prieto, et al. (SDSS Collab.), Astrophys. J. Suppl. Ser. 182, 2 (2009).

    Article  Google Scholar 

  2. V. L. Afanasiev, S. N. Dodonov, V. R. Amirkhanyan, and A. V. Moiseev, Astrophys. Bull. 71, 479 (2016).

    Article  ADS  Google Scholar 

  3. S. Alam, F. D. Albareti, P. C. Allende, F. Anders, S. F. Anderson, et al. (SDSS Collab.), Astrophys. J. Suppl. Ser. 219, 1 (2015).

    Article  Google Scholar 

  4. F. D. Albareti, C. A. Prieto, A. Almeida, et al. (SDSS Collab.), Astrophys. J. Suppl. Ser. 233, 25 (2017).

    Article  ADS  Google Scholar 

  5. J. A. Baldwin, M. M. Phillips, and R. Terlevich, Publ. Astron. Soc. Pacif. 93, 5 (1981).

    Article  ADS  Google Scholar 

  6. N. Ben Bekhti, L. Flöer, R. Keller, J. Kerp, D. Lenz, B. Winkel, et al., Astron. Astrophys. 594, A116 (2016).

    Article  Google Scholar 

  7. Th. Boller, M. J. Freyberg, J. Trümper, F. Haberl, W. Voges, and K. Nandra, Astron. Astrophys. 588, A103 (2016).

    Article  ADS  Google Scholar 

  8. R. A. Burenin, A. L. Amvrosov, M. V. Eselevich, V. M. Grigor’ev, V. A. Aref’ev, V. S. Vorob’ev, A. A. Lutovinov, M. G. Revnivtsev, S. Yu. Sazonov, A. Yu. Tkachenko, G. A. Khorunzhev, A. L. Yaskovich, and M. N. Pavlinsky, Astron. Lett. 42, 295 (2016).

    Article  ADS  Google Scholar 

  9. K. C. Chambers, E. A. Magnier, N. Metcalfe, H. A. Flewelling, M. E. Huber, C. Z. Waters, et al., arxiv.org:1612.05560.pdf (2016).

  10. P. A. Evans, K. L. Page, J. P. Osborne, A. P. Beardmore, R. Willingale, D. N. Burrows, et al., Astrophys. J. Suppl. Ser. 247, 2 (2020).

    Article  Google Scholar 

  11. J. P. Huchra, L. M. Macri, K. L. Masters, T. H. Jarrett, P. C. Berlind, M. Calkins, A. C. Crook, et al., Astrophys. J. Suppl. Ser. 199, 2 (2012).

    Article  Google Scholar 

  12. G. Kauffmann, T. M. Heckman, C. Tremonti, J. Brinchmann, S. Charlot, S. D. M. White, et al., Mon. Not. R. Astron. Soc. 346, 4 (2003).

    Article  Google Scholar 

  13. L. J. Kewley, M. A. Dopita, R. S. Sutherland, C. A. Heisler, and J. Trevena, Astron. J. 556, 1 (2001).

    Article  Google Scholar 

  14. S. S. Mathur, Mon. Not. R. Astron. Soc. 314, 4 (2000).

    Article  Google Scholar 

  15. K. Oh, M. Koss, C. B. Markwardt, K. Schawinski, W. H. Baumgartner, S. D. Barthelmy, et al., Astrophys. J. Suppl. Ser. 235, 1 (2018).

    Article  Google Scholar 

  16. D. E. Osterbrock, Astrophys. J. 241, 462 (1981).

    Article  ADS  Google Scholar 

  17. M. N. Pavlinski et al., Astron. Astrophys. (2021, in preparation). https://arxiv.org/pdf/2103.12479.pdf.

  18. P. Predehl, R. Andritschke, V. Arefiev, V. Babyshkin, O. Batanov, M. Becker, et al., Astron. Astrophys. (2020, in press). arxiv.org:2010.03477.pdf.

  19. S. Yu. Sazonov, J. P. Ostriker, and R. A. Sunyaev, Mon. Not. R. Astron. Soc. 347, 1 (2004).

    Article  Google Scholar 

  20. K. Schawinski, D. Thomas, M. Sarzi, C. Maraston, S. Kaviraj, S.-J. Joo, S. K. Yi, and J. Silk, Mon. Not. R. Astron. Soc. 382, 4 (2007).

    Article  Google Scholar 

  21. R. A. Sunyaev et al. (2021, in preparation).

  22. M.-P. Véron-Cetty, P. Véron, and A. C. Gonçalves, Astron. Astrophys. 372 (2001).

  23. M. Vestergaard and B. M. Peterson, Astron. Astrophys. 641, 2 (2006).

    Google Scholar 

  24. N. E. White, P. Giommi, and L. Angelini, VizieR On-line Data Catalog IX/31 (2000).

  25. E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, M. E. Ressler, R. M. Cutri, T. Jarrett, J. D. Kirkpatrick, D. Padgett, et al., Astron. J. 140, 1868 (2010).

    Article  ADS  Google Scholar 

  26. The XMM-Newton Survey Science Centre, VizieR On-line Data Catalog IX/53 (2018).

Download references

ACKNOWLEDGMENTS

This work was supported by RSF grant no. 19-12-00396. We thank TÜBITAK, the Space Research Institute of the Russian Academy of Sciences, the Kazan Federal University, and the Academy of Sciences of Tatarstan for supporting the observations at the Russian–Turkish 1.5-m telescope (RTT-150). The measurements with the AZT-33IK telescope were performed within the basic financing of the FNI II.16 program and were obtained using the equipment of the Angara sharing center.Footnote 6 The work of I.F. Bikmaev, E.N. Irtuganov, and E.A. Nikolaeva was supported by the subsidy (project no. 0671-2020-0052) allocated to the Kazan Federal University for the State assignment in the sphere of scientific activities.

In this study we used observational data from the eROSITA telescope onboard the SRG observatory. The SRG observatory was built by Roskosmos in the interests of the Russian Academy of Sciences represented by its Space Research Institute (IKI) within the framework of the Russian Federal Space Program, with the participation of the Deutsches Zentrum für Luft- und Raumfahrt (DLR). The SRG/eROSITA X-ray telescope was built by a consortium of German Institutes led by MPE, and supported by DLR. The SRG spacecraft was designed, built, launched, and is operated by the Lavochkin Association and its subcontractors. The science data are downlinked via the Deep Space Network Antennae in Bear Lakes, Ussurijsk, and Baykonur, funded by Roskosmos. The eROSITA data used in this work were processed using the eSASS software system developed by the German eROSITA consortium and the proprietary data reduction and analysis software developed by the Russian eROSITA Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Zaznobin.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaznobin, I.A., Uskov, G.S., Sazonov, S.Y. et al. Optical Identification of Candidates for Active Galactic Nuclei Detected by the Mikhail Pavlinsky ART-XC Telescope Onboard the SRG Observatory during an All-Sky X-ray Survey. Astron. Lett. 47, 71–87 (2021). https://doi.org/10.1134/S1063773721020067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773721020067

Keywords:

Navigation