Advertisement

Astronomy Letters

, Volume 45, Issue 5, pp 276–281 | Cite as

Analytical Model of Time-Dependent Ionization in the Envelopes of Type II Supernovae at the Photospheric Phase

  • M. Sh. PotashovEmail author
  • S. I. BlinnikovEmail author
Article

Abstract

We investigate a simplified kinetic system of the hydrogen atom (two levels plus continuum) under conditions of a type IIP supernova at the plateau phase that realistically describes the basic properties of the complete system. We have found the Lyapunov function for the reduced system using which we have analytically obtained the ionization freeze-out effect on long time scales. Since the system completely recombines in the equilibrium approximation on long time scales, which does not occur in reality, this result confirms the necessity of allowance for the time-dependent effect in the kinetics during the photospheric phase in a supernova explosion.

Keywords

supernovae atmospheres spectral line formation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We are grateful to N.N. Shakhvorostova, V.P. Utrobin, and A.V. Yudin for the stimulating discussions.

References

  1. 1.
    P. V. Baklanov, S. I. Blinnikov, and N. N. Pavlyuk, Astron. Lett. 31, 429 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    P. V. Baklanov, S. I. Blinnikov, M. Sh. Potashov, and A. D. Dolgov, JETP Lett. 98, 432 (2013)].ADSCrossRefGoogle Scholar
  3. 3.
    E. Baron, P. E. Nugent, D. Branch, and P. H. Hauschildt, Astrophys. J. 616, L91 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    S. I. Blinnikov, M. Sh. Potashov, P. V. Baklanov, and A. D. Dolgov, JETP Lett. 96, 153 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    J. I. Castor, Mon. Not. R. Astron. Soc. 149, 111 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    N. N. Chugai, Astrophysics 26, 53 (1987)].ADSCrossRefGoogle Scholar
  7. 7.
    N. N. Chugai, in Proceedings of the 10th Santa Cruz Workshop in Astronomy and Astrophysics, Ed. by S. E. Woosley (Springer, New York, 1991), p. 286.Google Scholar
  8. 8.
    S. De, Mon.Not.R.Astron. Soc. 401, 2081 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    B. Demidovich, Lectures on the Mathematical Theory of Stability (Nauka, Moscow, 1978)[in Russian].Google Scholar
  10. 10.
    L. Dessart, Astrophys. J. 675, 644 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    L. Dessart and D. J. Hillier, Mon. Not. R. Astron. Soc. 383, 57 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    L. Dessart and D. J. Hillier, Mon. Not. R. Astron. Soc. 405, 23 (2010).Google Scholar
  13. 13.
    J. M. Ezquiaga and M. Zumalacarregui, arXiv:1807.09241 (2018).Google Scholar
  14. 14.
    D. J. Hillier and L. Dessart, Mon. Not. R. Astron. Soc. 424, 252 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    I. Hubeny and T. Lanz, Astrophys. J. 439, 874 (1995).ADSCrossRefGoogle Scholar
  16. 16.
    D. G. Hummer and G. B. Rybicki, Astrophys. J. 293, 258 (1985).ADSCrossRefGoogle Scholar
  17. 17.
    H. K. Khalil, Nonlinear System (Prentice Hall, Englewood Cliffs, NJ, 2002).Google Scholar
  18. 18.
    R. P. Kirshner and J. Kwan, Astrophys. J. 193, 27 (1974).ADSCrossRefGoogle Scholar
  19. 19.
    R. P. Kirshner and J. Kwan, Astrophys. J. 197, 415 (1975).ADSCrossRefGoogle Scholar
  20. 20.
    V. M. Kuntsevich and M. M. Lychak, Synthesis of Automatic Control Systems Using the Lyapunov Function (Nauka, Moscow, 1977) [in Russian].zbMATHGoogle Scholar
  21. 21.
    D. Mihalas, Stellar Atmospheres (W. H. Freeman, San Francisco, 1978).Google Scholar
  22. 22.
    E. Mortsell, J. Cosmol. Astropart. Phys. 9 (2018).Google Scholar
  23. 23.
    P. J. E. Peebles, Astrophys. J. 153, 1 (1968).ADSCrossRefGoogle Scholar
  24. 24.
    I. Petrovskii, Lectures on the Theory of Ordinary Differential Equations (Moscow Univ. Press, Moscow, 1984) [in Russian].Google Scholar
  25. 25.
    M. Sh. Potashov, S. I. Blinnikov, P. V. Baklanov, and A. D. Dolgov, Mon. Not. R. Astron. Soc. 431, L98 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    M. Sh. Potashov, S. I. Blinnikov, and V. P. Utrobin, Astron. Lett. 43, 36 (2017).ADSCrossRefGoogle Scholar
  27. 27.
    Y. P. Raizer, Sov. Phys. JETP 7, 169 (1959).Google Scholar
  28. 28.
    A. G. Riess, Astrophys. J. 861, 126 (2018).ADSCrossRefGoogle Scholar
  29. 29.
    V. V. Sobolev, Moving Envelopes of Stars (Harvard Univ. Press, Cambridge, 1960).CrossRefGoogle Scholar
  30. 30.
    V. P. Utrobin, Astron. Astrophys. 461, 233 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    V. P. Utrobin and N. N. Chugai, Astron. Lett. 28, 386 (2002).ADSCrossRefGoogle Scholar
  32. 32.
    V. P. Utrobin and N. N. Chugai, Astron. Astrophys. 441, 271 (2005).ADSCrossRefGoogle Scholar
  33. 33.
    C. Vogl, arXiv:1811.02543 (2018).Google Scholar
  34. 34.
    Ya. B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Fizmatlit, Moscow, 2008, 3rd ed.; Academic, New York, 1966, 1967).Google Scholar
  35. 35.
    Y. B. Zeldovich, V. G. Kurt, and R. A. Syunyaev, Sov. Phys. JETP 28, 146 (1969).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.NRC “Kurchatov Institute”—ITEPMoscowRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Space Research InstituteRussian Academy of SciencesMoscowRussia
  4. 4.Institute of Physics and Mathematics of the UniverseUniversity of TokyoKashiwaJapan

Personalised recommendations