Astronomy Letters

, Volume 45, Issue 2, pp 81–91 | Cite as

Simulation of a Hydrodynamic Stellar Wind from a Rapidly Rotating Star

  • S. V. BogovalovEmail author
  • S. M. Romanikhin
  • I. V. Tronin


The mechanism for the formation of disk-like flows from rapidly rotating Be stars is not yet clear. An axisymmetric hydrodynamic stellar wind flow from a rapidly rotating star has been simulated numerically as a step in solving this problem. The change in the shape of the star as it rotates and the turbulence excited in the stellar wind at Reynolds numbers ∼109−1013 are taken into account. Calculations show the formation of a disk-like flow from the stellar surface at the equator, which expands into the polar regions due to a pressure gradient on scales of the order of the stellar radius. A poloidal velocity vortex is formed at high latitudes. No turbulence is excited near the equator within the simplest standard models and, therefore, no quasi-Keplerian disk-like flow emerges in the equatorial plane. A dependence of the total mass flux on the stellar rotation rate at various surface temperatures has been obtained.


Be stars circumstellar disk stellar wind model rapidly rotating stars 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Abdo, M. Ackermann, M. Ajello, A. Allafort, J. Ballet, G. Barbiellini, D. Bastieri, K. Bechtol, et al., Astrophys. J. 736, L11 (2011).ADSCrossRefGoogle Scholar
  2. 2.
    F. Aharonian, A. G. Akhperjanian, K.-M. Aye, A. R. Bazer-Bachi, M. Beilicke, W. Benbow, D. Berge, P. Berghaus, et al., Astron. Astrophys. 442, 1 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    F. Aharonian, A. G. Akhperjanian, G. Anton, U. Barres de Almeida, A. R. Bazer-Bachi, Y. Becherini, B. Behera, K. Bernlöhr, et al., Astron. Astrophys. 507, 389 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    T. J. Barth and D. C. Jesperson, AIAA J. 13, 0366 (1989).Google Scholar
  5. 5.
    V. S. Beskin and Y. N. Pidoprygora, Astron. Rep., 42, 71 (1998).ADSGoogle Scholar
  6. 6.
    J. E. Bjorkman and J. P. Cassinelli, Astrophys. J. 409, 429 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    S. V. Bogovalov, Astron. Astrophys. 323, 634 (1997).ADSGoogle Scholar
  8. 8.
    S. V. Bogovalov and S. M. Romanikhin, Int. J. Mod. Phys. D 27, 1844004–336 (2018).ADSCrossRefGoogle Scholar
  9. 9.
    A. C. Carciofi, IAU Symp. 272, 325 (2001).ADSGoogle Scholar
  10. 10.
    A. C. Carciofi and J. E. Bjorkman, Astrophys. J. 684, 1374 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    A. C. Carciofi, A. Domiciano de Souza, A. M. Magalhes, J. E. Bjorkman, and F. Vakili, Astrophys. J. 676, L41 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    M. Chernyakova, A. A. Abdo, A. Neronov, M. V. McSwain, J. Moldón, M. Ribó, J. M. Paredes, I. Sushch, et al., Mon. Not. R. Astron. Soc. 439, 432 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    X. Haubois, B. C. Mota, A. C. Carciofi, Z. H. Draper, J. P. Wisniewski, D. Bednarski, and Th. Rivinius, Astrophys. J. 785, 12 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    S. Johnston, R. N. Manchester, D. McConnell, and D. Campbell-Wilson, Mon. Not. R. Astron. Soc. 302, 277 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    S. Johnston, L. Ball, N. Wang, and R. N. Manchester, Mon. Not. R. Astron. Soc. 358, 1069 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    R. Keppens and J. P. Goedbloed, Astron. Astrophys. 343, 251 (1999).ADSGoogle Scholar
  17. 17.
    R. Kippenhahn, A. Weigert, and A. Weiss, Stellar Structure and Evolution (Springer, Berlin, Heidelberg, 2012).CrossRefzbMATHGoogle Scholar
  18. 18.
    J. G. Kirk, L. Ball, and O. Skjæraasen, Astropart. Phys. 10, 31 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    H. J. G. L. M. Lamers and J. P. Cassinelli, Introduction to Stellar Winds (Cambridge Univ. Press, UK, 1999).CrossRefGoogle Scholar
  20. 20.
    B. E. Launder and D. B. Spalding, Comput. Meth. Appl. Mech. Eng. 3, 269 (1973).CrossRefGoogle Scholar
  21. 21.
    U. Lee, Publ. Astron. Soc. Jpn. 65, 122 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    U. Lee, Y. Osaki, and H. Saio, Mon. Not. R. Astron. Soc. 250, 432 (1991).ADSCrossRefGoogle Scholar
  23. 23.
    A. Melatos, S. Johnston, and D. B. Melrose, Mon. Not. R. Astron. Soc. 275, 381 (1995).ADSCrossRefGoogle Scholar
  24. 24.
    C. Neiner, S. Mathis, H. Saio, and U. Lee, Astron. Soc. Pacif. Conf. Ser. 479, 319 (2013).ADSGoogle Scholar
  25. 25.
    A. T. Okazaki and I. Negueruela, Astron. Astrophys. 377, 161 (2001).ADSCrossRefGoogle Scholar
  26. 26.
    S. Owocki, Astron. Soc. Pacif. Conf. Ser. 355, 219 (2006).ADSGoogle Scholar
  27. 27.
    S. P. Owocki, S. R. Cranmer, and J. M. Blondin, Astrophys. J. 424, 887 (1994).ADSCrossRefGoogle Scholar
  28. 28.
    D. M. Peterson, C. A. Hummel, T. A. Pauls, J. T. Armstrong, J. A. Benson, G. C. Gilbreath, R. B. Hindsley, D. J. Hutter, et al., Astrophys. J. 636, 1087 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    J. M. Porter, Astron. Astrophys. 348, 512 (1999).ADSGoogle Scholar
  30. 30.
    J. M. Porter and T. Rivinius, Publ. Astron. Soc. Pacif. 115, 1153 (2003).ADSCrossRefGoogle Scholar
  31. 31.
    T. Rivinius, A. C. Carciofi, and C. Martayan, Astron. Astrophys. Rev. 21, 69 (2013).ADSCrossRefGoogle Scholar
  32. 32.
    N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).ADSGoogle Scholar
  33. 33.
    Y. Touhami, Am. Astron. Soc. Meet. Abstracts 219, 404.02 (2012).ADSGoogle Scholar
  34. 34.
    R. G. Vieira, A. C. Carciofi, and J. E. Bjorkman, Astron. Soc. Pacif. Conf. Ser. 506, 135 (2016).ADSGoogle Scholar
  35. 35.
    R. G. Vieira, A. C. Carciofi, J. E. Bjorkman, Th. Rivinius, D. Baade, and L. R. Rimulo, 464, 3071 (2017).Google Scholar
  36. 36.
    G. A. Wade, V. Petit, J. H. Grunhut, C. Neiner, and MiMeS Collab., Astron. Soc. Pacif. Conf. Ser. 506, 207 (2016).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • S. V. Bogovalov
    • 1
    Email author
  • S. M. Romanikhin
    • 1
  • I. V. Tronin
    • 1
  1. 1.MEPhI National Research Nuclear UniversityMoscowRussia

Personalised recommendations