Advertisement

Astronomy Letters

, Volume 42, Issue 7, pp 474–481 | Cite as

On the stability of circumbinary planetary systems

  • E. A. Popova
  • I. I. ShevchenkoEmail author
Article

Abstract

The dynamics of circumbinary planetary systems (the systems in which the planets orbit a central binary) with a small binary mass ratio discovered to date is considered. The domains of chaotic motion have been revealed in the “pericentric distance–eccentricity” plane of initial conditions for the planetary orbits through numerical experiments. Based on an analytical criterion for the chaoticity of planetary orbits in binary star systems, we have constructed theoretical curves that describe the global boundary of the chaotic zone around the central binary for each of the systems. In addition, based on Mardling’s theory describing the separate resonance “teeth” (corresponding to integer resonances between the orbital periods of a planet and the binary), we have constructed the local boundaries of chaos. Both theoretical models are shown to describe adequately the boundaries of chaos on the numerically constructed stability diagrams, suggesting that these theories are efficient in providing analytical criteria for the chaoticity of planetary orbits.

Keywords

celestial mechanics planetary systems binary stars numerical methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Benest, Astron. Astrophys. 206, 143 (1988).ADSGoogle Scholar
  2. 2.
    D. Benest, Astron. Astrophys. 223, 361 (1989).ADSGoogle Scholar
  3. 3.
    D. Benest and R. Gonczi, Earth, Moon, Planets 81, 7 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    D. Benest and R. Gonczi, Earth, Moon Planets 93, 175 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    S. Chavez, N. Georgakarakos, S. Prodan, M. Reyes-Ruiz, H. Aceves, F. Betancourt, and E. Perez-Tijerina, Mon. Not. R. Astron. Soc. 446, 1283 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    B. V. Chirikov, Phys. Rep. 52, 263 (1979).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    L. Doyle, J. Carter, D. Fabrycky, R. W. Slawson, S. B. Howell, J. N. Winn, J. A. Orosz, A. Prsa, et al., Science 333, 1602 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    M. J. Holman and P. A. Wiegert, Astron. J. 117, 621 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    Su-Shu Huang, Publ. Astron. Soc. Pacif. 72, 106 (1960).ADSCrossRefGoogle Scholar
  10. 10.
    V. Kostov, P. R. McCullough, T. C. Hinse, Z. I. Tsvetanov, G. Hébrard, R. F. Díaz, M. Deleuil, and J. A. Valenti, Astrophys. J. 770, 52 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    V. Kostov, P. R. McCullough, J. A. Carter, M. Deleuil, R. F. Díaz, D. C. Fabrycky, G. Hébrard, T. C. Hinse, et al., Astron. J. 784, 14 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    A. Lichtenberg and M. Lieberman, Regular and Chaotic Dynamics (Springer, New York, 1992).CrossRefzbMATHGoogle Scholar
  13. 13.
    J. Lissauer, E. Quintana, J. Chambers, M. J. Duncan, and F. C. Adams, Rev.Mex. Astron.Astrophys. 22, 99 (2004).ADSGoogle Scholar
  14. 14.
    R. Mardling, Lect. Notes Phys. 760, 59 (2008a).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Mardling, in Proceedings of the IAU Symposium No. 246 on Dynamical Evolution of Dense Stellar Systems, Capri, Italy, Sept. 5–9, 2007, Ed. by E. Vesperini, M. Giersz, and A. Sills (Cambridge Univ. Press, Cambridge, 2008b), p. 199.Google Scholar
  16. 16.
    A. V. Mel’nikov and I. I. Shevchenko, Solar Syst. Res. 32, 480 (1998).ADSGoogle Scholar
  17. 17.
    J. Orosz, W. F. Welsh, J. A. Carter, E. Brugamyer, L.A. Buchhave, W. D. Cochran, M. Endl, E. B. Ford, et al., Astrophys. J. 758, 87 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    E. A. Popova, in Proceedings of the IAU Symposium No. 310 on Complex Planetary Systems, Ed. by Z. Knezevic and A. Lemaitre (Cambridge Univ. Press, Cambridge, 2014), p. 98.Google Scholar
  19. 19.
    E. A. Popova and I. I. Shevchenko, Astron. Lett. 38, 581 (2012a).ADSCrossRefGoogle Scholar
  20. 20.
    E. A. Popova and I. I. Shevchenko, in Proceedings of the IAU Symposium No. 282 From Interacting Binaries to Exoplanets: Essential Modeling Tools, Ed. by M. T. Richards and I. Hubeny (Cambridge Univ. Press, Cambridge, 2012b), p. 450.Google Scholar
  21. 21.
    E. A. Popova and I. I. Shevchenko, Astrophys. J. 769, 152 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    I. I. Shevchenko, in Asteroids, Comets, Meteors, Ed. by B. Warmbein (ESA, Berlin, 2002), p. 367.Google Scholar
  23. 23.
    I. I. Shevchenko, Astrophys. J. 799, 8 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    I. I. Shevchenko and A. V. Mel’nikov, JETP Lett. 77, 642 (2003).ADSCrossRefGoogle Scholar
  25. 25.
    P. Thébault, F. Marzari, and H. Scholl, Mon. Not. R. Astron. Soc. 388, 1528 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    P. Thébault, F. Marzari, and H. Scholl, Mon. Not. R. Astron. Soc. 393, 21 (2009).ADSCrossRefGoogle Scholar
  27. 27.
    W. Welsh et al., in Proceedings of the IAU Symposium No. 293 on Formation, Detection, and Characterization of Extrasolar Habitable Planets, August 27–31, 2012, Ed. by N. Haghighipour (2013), p. 1.Google Scholar
  28. 28.
    P. Wiegert and M. Holman, Astron. J. 113, 1445 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Pulkovo Astronomical ObservatoryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations