Astronomy Letters

, Volume 40, Issue 1, pp 29–45 | Cite as

Modeling the luminosity function of galactic low-mass X-ray binaries

  • A. G. Kuranov
  • K. A. Postnov
  • M. G. Revnivtsev
Article

Abstract

The evolution of the family of binaries with a low-mass star and a compact neutron star companion (low-mass X-ray binaries (LMXBs) with neutron stars) ismodeled by the method of population synthesis. Continuous Roche-lobe filling by the optical star in LMXBs is assumed to be maintained by the removal of orbital angular momentum from the binary by a magnetic stellar wind from the optical star and the radiation of gravitational waves by the binary. The developed model of LMXB evolution has the following significant distinctions: (1) allowance for the effect of the rotational evolution of a magnetized compact remnant on themass transfer scenario in the binary, (2) amore accurate allowance for the response of the donor star to mass loss at the Roche-lobe filling stage. The results of theoretical calculations are shown to be in good agreement with the observed orbital period-X-ray luminosity diagrams for persistent Galactic LMXBs and their X-ray luminosity function. This suggests that the main elements of binary evolution, on the whole, are correctly reflected in the developed code. It is shown that most of the Galactic bulge LMXBs at luminosities Lx > 1037 erg s−1 should have a post-main-sequence Roche-lobe-filling secondary component (low-mass giants). Almost all of the models considered predict a deficit of LMXBs at X-ray luminosities near ∼1036.5 erg s−1 due to the transition of the binary from the regime of angular momentum removal by a magnetic stellar wind to the regime of gravitational waves (analogous to the widely known period gap in cataclysmic variables, accreting white dwarfs). At low luminosities, the shape of the model luminosity function for LMXBs is affected significantly by their transient behavior-the accretion rate onto the compact companion is not always equal to the mass transfer rate due to instabilities in the accretion disk around the compact object. The best agreement with observed binaries is achieved in the models suggesting that heavy neutron stars with masses 1.4–1.9M can be born.

Keywords

X-ray sources low-mass X-ray binaries accretion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Antoniadis, P. C. C. Freire, N. Wex, et al., Science 340, 448 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    K. Belczynski, V. Kalogera, F. A. Rasio, et al., Astrophys. J. Supp. Ser. 174, 223 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    D. Bhattacharya, Astron. Astrophys. 23, 67 (2002).CrossRefGoogle Scholar
  4. 4.
    G. S. Bisnovatyi-Kogan and B. V. Komberg, Sov. Astron. 18, 217 (1974).ADSGoogle Scholar
  5. 5.
    G. Dubus, R. E. Taam, and H. C. Spruit, Astrophys. J. 569, 395 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    C. A. Faucher-Giguere and V. M. Kaspi, Astrophys. J. 643, 332 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    J. Faulkner, Astrophys. J. 170, L99 (1971).ADSCrossRefGoogle Scholar
  8. 8.
    T. Fragos, V. Kalogera, K. Belczynski, et al., Astrophys. J. 683, 346 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    M. R. Gilfanov, Mon. Not. R. Astron. Soc. 349, 146 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    M. R. Gilfanov, Phys. Usp. 56, 714 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    S. B. Howell, L. A. Nelson, and S. Rappaport, Astrophys. J. 550, 897 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    J. R. Hurley, O. R. Pols, and C. A. Tout, Mon. Not. R. Astron. Soc. 315, 543 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    J. R. Hurley, O. R. Pols, and C. A. Tout, Mon. Not. R. Astron. Soc. 329, 897 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    I. Iben, Jr., A. V. Tutukov, and L. R. Yungelson, Astrophys. J. Supp. Ser. 100, 233 (1995).ADSCrossRefGoogle Scholar
  15. 15.
    I. Iben, Jr. and A. Renzini, Astron. Astrophys. 21, 271 (1983).ADSCrossRefGoogle Scholar
  16. 16.
    D.-W. Kim, G. Fabbiano, Astrophys. J. 611, 846 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    C. Knigge, I. Baraffe, and J. Patterson, Astrophys. J. Supp. Ser. 194, 28 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    S. R. Kulkarni, Astrophys. J. 306, 85 (1986).ADSCrossRefGoogle Scholar
  19. 19.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Fizmatlit, Moscow, 2001, 8th ed.; Pergamon, Oxford, 1975).Google Scholar
  20. 20.
    J. Lin, S. Rappaport, Ph. Podsiadlowski, et al., Astrophys. J. 732, ID70 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    V. M. Lipunov, Astrophysics of Neutron Stars (Nauka, Moscow, 1987; Springer, Heidelberg, 1992).Google Scholar
  22. 22.
    V. M. Lipunov, K. A. Postnov, M. E. Prokhorov, and A. I. Bogomazov, Astron. Rep. 53, 915 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    G.-L. Lü, C.-H. Zhu, K. A. Postnov, et al.,Mon. Not. R. Astron. Soc. 424, 2265 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    K. Menou, R. Perna, and L. Hernquist, Astrophys. J. 564, 81 (2002).ADSCrossRefGoogle Scholar
  25. 25.
    B. Paczynski, Astron. Astrophys. 9, 183 (1971).ADSCrossRefGoogle Scholar
  26. 26.
    M. N. Pavlinsky, R. A. Sunyaev, E. M. Churazov, et al., Proc. SPIE 7011, 70110H (2008).CrossRefGoogle Scholar
  27. 27.
    Ph. Podsiadlowski, S. Rappaport, and E. D. Pfahl, Astrophys. J. 565, 1107 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    Ph. Podsiadlowski, N. Langer, A. J. T. Poelarends, et al., Astrophys. J. 612, 1044 (2004).ADSCrossRefGoogle Scholar
  29. 29.
    S. B. Popov and M. E. Prokhorov, Phys. Usp. 50, 1123 (2007).ADSCrossRefGoogle Scholar
  30. 30.
    K. A. Postnov and A. G. Kuranov, Astron. Lett. 31, 140 (2005).CrossRefGoogle Scholar
  31. 31.
    K. A. Postnov and L. R. Yungelson, Living Rev. Relat. 6, 1 (2006).Google Scholar
  32. 32.
    F. A. Primini, W. Forman, and C. Jones, Astrophys. J. 410, 516 (1993).CrossRefGoogle Scholar
  33. 33.
    S. Rappaport, P. S. Joss, and R. F. Webbink, Astrophys. J. 254, 616 (1982).ADSCrossRefGoogle Scholar
  34. 34.
    S. Rappaport, F. Verbunt, and P. S. Joss, Astrophys. J. 275, 713 (1983).ADSCrossRefGoogle Scholar
  35. 35.
    M. Revnivtsev, A. Lutovinov, E. Churazov, et al., Astron. Astrophys. 491, 209 (2008).ADSCrossRefGoogle Scholar
  36. 36.
    M. Revnivtsev, K. A. Postnov, A. G. Kuranov, and H. Ritter, Astron. Astrophys. 526, ID A94 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    R. Romani, Nature 347, 741 (1990).ADSCrossRefGoogle Scholar
  38. 38.
    A. Skumanich, Astrophys. J. 171, 565 (1972).ADSCrossRefGoogle Scholar
  39. 39.
    M. A. Smith, Publ. Astr. Soc. Pacif. 91, 737 (1979).ADSCrossRefGoogle Scholar
  40. 40.
    H. C. Spruit and H. Ritter, Astron. Astrophys. 124, 267 (1983).ADSGoogle Scholar
  41. 41.
    H.C. Spruit and H. Ritter, Publ. Astr. Soc.Pacif. 91, 737(1979)ADSCrossRefGoogle Scholar
  42. 42.
    R. Taam and E. P. J. van den Heuvel, Astrophys. J. 305, 235 (1986).ADSCrossRefGoogle Scholar
  43. 43.
    A. V. Tutukov and L. R. Yungelson, Nauch. Inform. Astrosoveta 49, 3 (1981).ADSGoogle Scholar
  44. 44.
    A. V. Tutukov, A. V. Fedorova, E. Ergma, and L. R. Yungel’son, Sov. Astron. Lett. 11, 23 (1985).ADSGoogle Scholar
  45. 45.
    F. Verbunt and C. Zwaan, Astron. Astrophys. 100, 7 (1981).ADSGoogle Scholar
  46. 46.
    R. F. Webbink, S. Rappaport, and G. Savonije, Astrophys. J. 270, 678 (1983).ADSCrossRefGoogle Scholar
  47. 47.
    W. Zhang, S. E. Woosley, and A. Heger, Astrophys. J. 679, 639 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    A. G. Zhilkin, D. V. Bisikalo, and A. A. Boyarchuk, Phys. Usp. 55, 115 (2012).ADSCrossRefGoogle Scholar
  49. 49.
    M. Zoccali, A. Renzini, S. Ortolani, et al., Astron. Astrophys. 399, 931 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • A. G. Kuranov
    • 1
  • K. A. Postnov
    • 1
  • M. G. Revnivtsev
    • 2
  1. 1.Sternberg Astronomical InstituteUniversitetskii pr. 13MoscowRussia
  2. 2.Space Research InstituteMoscowRussia

Personalised recommendations