Astronomy Letters

, Volume 39, Issue 7, pp 474–480 | Cite as

Dependence of the solar wind speed on the coronal magnetic field in cycle 23

Article

Abstract

The dependence of the position of the solar wind sonic point on the magnetic field in the solar corona during cycle 23 is studied. This dependence is shown to be rather strong in the rising phase and at the cycle maximum. As the coronal magnetic field grows, the distance to the sonic point decreases. Since the distance to the sonic point has been shown previously to anticorrelate with the solar wind speed, the result obtained suggests a strong positive correlation between the later and the coronal magnetic field. The situation changed dramatically two years after the calendar date of the cycle maximum. Beginning in 2004 the solar wind speed ceased to depend on the magnetic field up until the cycle minimum in December 2008. In 2009 a strong dependence of the wind speed on the coronal magnetic field was restored. It is hypothesized that this effect is associated with two different coronal heating mechanisms whose relative efficiency, in turn, depends on the contribution from magnetic fields of different scales.

Keywords

solar magnetic field solar wind radio occultation method 

References

  1. 1.
    M. J. Aschwanden, Physics of the Solar Corona: An Introduction (Springer, Berlin, 2004).Google Scholar
  2. 2.
    O. G. Badalyan and V. N. Obridko, Solar Phys. 238, 271 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    O. G. Badalyan and V. N. Obridko, Astron. Lett. 33, 182 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    M. Kodjima, K. Asai, K. Hakamada, T. Ohmi, et al., ATP Conf. Prog. 471, 29 (1998).ADSGoogle Scholar
  5. 5.
    I. M. Livshits and V. N. Obridko, Astron. Rep. 50, 926 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    N. A. Lotova, O. A. Korelov, and E. V. Pisarenko, Geomagn. Aeron. 32, 78 (1992).ADSGoogle Scholar
  7. 7.
    N. A. Lotova, K. V. Vladimirskii, V. N. Obridko, et al., Solar Phys. 205, 149 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    N. A. Lotova, K. V. Vladimirskii, and V. N. Obridko, Geomagn. Aeron. 50, 711 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    N. A. Lotova, K. V. Vladimirskii, and V. N. Obridko, Solar Phys. 269, 129 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    C. H. Mandrini, J. Der Moulin, and A. Klimchuk, Astrophys. J. 530, 999 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    V. N. Obridko and F. A. Yermakov, Astron. Tsirk. 1539, 24 (1989).ADSGoogle Scholar
  12. 12.
    V. N. Obridko and B. D. Schelting, Solar Phys. 173, 167 (1992).ADSCrossRefGoogle Scholar
  13. 13.
    V. N. Obridko, E. V. Ivanov, A. Ozguc, et al., Solar Phys. 281, 779 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    R. Schwenn, Space Sci. Rev. 124, 51 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN)Russian Academy of SciencesTroitsk, Moscow oblastRussia

Personalised recommendations