Astronomy Letters

, Volume 39, Issue 5, pp 315–335 | Cite as

Non-LTE modeling of narrow emission components of He and Ca lines in optical spectra of classical T Tauri stars



Using LTE calculations of the structure of T Tauri stellar atmospheres heated by radiation from an accretion shock (Dodin and Lamzin 2012), we have calculated the spectrum of the hot spot emerging on the stellar surface by taking into account non-LTE effects for He I, He II, Ca I, and Ca II. Assuming the pre-shock gas density N0 and velocity V0 to be the same at all points of the accretion stream cross section, we have calculated the spectrum of the star+circular spot system at various N0, V0, and parameters characterizing the star and the spot. Using nine stars as an example, we show that the theoretical optical spectra reproduce well the observed veiling of photospheric absorption lines as well as the profiles and intensities of the so-called narrow components of He II and Ca I emission lines with an appropriate choice of parameters. The accreted gas density in all of the investigated stars except DK Tau has been found to be N0 > 1012 cm−3. We have managed to choose the parameters for eight stars at a calcium abundance in the accreted gas ξCa equal to the solar one, but we have been able to achieve agreement between the calculations and observations for TW Hya only by assuming ξCa to be approximately a factor of 3 lower than the solar one. The estimated parameters do not depend on interstellar extinction, because they have been determined from the spectra normalized to the continuum level. The calculated intensity of Ca II lines has turned out to be lower than the observed one, but this contradiction can be eliminated by assuming that, in addition to the accreted gas with a high density N0, a more rarefied gas also falls onto the star. The theoretical equivalent widths and relative intensities of the subordinate He I lines disagree significantly with the observations. This is apparently because non-LTE effects should be taken into account when calculating the structure of the upper layers of the hot spot, the accuracy of the cross sections for collisional processes from upper levels is insufficient, and the spot inhomogeneity should probably be taken into account.


stars-individual: GM Aur BP Tau DK Tau DN Tau GI Tau GK Tau V836 Tau DI Cep TW Hya-T Tauri stars-stellar atmospheres-radiative transfer-spectra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. C. Batalha, N. M. Stout-Batalha, G. Basri, and M. A. O. Nerra, Astrophys. J. Suppl. Ser. 103, 211 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    V. B. Berestetskii, E. M. Lifshits, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Pergamon, Oxford, 1982; Nauka, Moscow, 1989).Google Scholar
  3. 3.
    J. Bouvier and C. Bertout, Astron. Astrophys. 211, 99 (1989).ADSGoogle Scholar
  4. 4.
    K. Butler and J. Giddings, Newsletter on the Analysis of Astronomical Spectra, No. 9 (Univ. of London, 1985).Google Scholar
  5. 5.
    N. Calvet and E. Gullbring, Astrophys. J. 509, 802 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    R. E. H. Clark, J. Abdallah, Jr., and J. B. Mann, Astrophys. J. 381, 597 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    K. P. Dere, E. Landi, H. E. Mason, et al., Astron. Astrophys. Suppl. Ser. 125, 149 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    M. S. Dimitrijevic and S. Sahal-Brechot, J. Quant. Spectrosc. Radiat. Transfer 31, 301 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    A. V. Dodin, S. A. Lamzin, and G. A. Chuntonov, Astron. Lett. 38, 167 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    A. V. Dodin and S. A. Lamzin, Astron. Lett. 38, 649 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    J.-F. Donati, M. M. Jardine, S. G. Gregory, et al., Mon. Not. R. Astron. Soc. 386, 1234 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    J.-F. Donati, S. G. Gregory, S. H. P. Alencar, et al., Mon. Not. R. Astron. Soc. 417, 472 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    G. J. Ferland, K. T. Korista, D. A. Verner, et al., Publ. Astron. Soc. Pacif. 110, 761 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    G. F. Gahm, F. M. Walter, H. C. Stempels, et al., Astron. Astrophys. 482, L35 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    J. F. Gameiro, D. F.M. Folha, and P. P. Petrov, Astron. Astrophys. 445, 323 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    V. V. Golovatyj, A. Sapar, T. Feklistova, and A. F. Kholtygin, Astron. Astrophys. Trans. 12, 85 (1997).ADSCrossRefGoogle Scholar
  17. 17.
    Ch. Gräfe, S. Wolf, V. Roccatagliata, et al., Astron. Astrophys. 533, 89 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    E. Gullbring, L. Hartmann, C. Briceño, and N. Calvet, Astrophys. J. 492, 323 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    L. Hartmann and J. R. Staufer, Astron. J. 97, 873 (1989).ADSCrossRefGoogle Scholar
  20. 20.
    C. M. Johns-Krull and J. A. Valenti, Astrophys. J. 561, 1060 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    A. H. Joy, Astrophys. J. 110, 424 (1949).ADSCrossRefGoogle Scholar
  22. 22.
    J. H. Kastner, D. P. Huenemoerder, N. S. Schulz, and C. R. Canizares, Astrophys. J. 567, 434 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    S. J. Kenyon and L. Hartmann, Astrophys. J. Suppl. Ser. 101, 117 (1995).ADSCrossRefGoogle Scholar
  24. 24.
    A. Königl,, Astrophys. J. 370, L339 (1991).Google Scholar
  25. 25.
    R. Kurosawa and M.M. Romanova, Mon. Not.R. Astron. Soc. 426, 2901 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    R. Kurucz, ATLAS9 Stellar Atmosphere Programs and 2 km/s Grid, Kurucz CD-ROMNo. 13 (Smithsonian Astrophys. Observ., Cambridge, MA, 1993).Google Scholar
  27. 27.
    S. A. Lamzin, Astron. Astrophys. 295, L20 (1995).ADSGoogle Scholar
  28. 28.
    S. A. Lamzin, Astron. Rep. 42, 322 (1998).ADSGoogle Scholar
  29. 29.
    E. Landi, G. Del Zanna, P. R. Young, et al. Astrophys. J. Suppl. Ser. 162, 261 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    L. Mashonkina, A. J. Korn, and N. Przybilla, Astron. Astrophys. 461, 261 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    D. Mihalas, Stellar Atmospheres (Freeman, San Francisco, 1978; Mir, Moscow, 1982).Google Scholar
  32. 32.
    S. N. Nahar, New Astron. 15, 417 (2010).ADSCrossRefGoogle Scholar
  33. 33.
    P. P. Petrov, G. F. Gahm, J. F. Gameiro, et al., Astron. Astrophys. 369, 993 (2001).ADSCrossRefGoogle Scholar
  34. 34.
    P. P. Petrov, G. F. Gahm, H. C. Stempels, et al., Astron. Astrophys. 535, 6 (2011).ADSCrossRefGoogle Scholar
  35. 35.
    H. van Regemorter, Astrophys. J. 136, 906 (1962)ADSCrossRefGoogle Scholar
  36. 36.
    M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, and R. V. E. Lovelace, Astrophys. J. 610, 920 (2004).ADSCrossRefGoogle Scholar
  37. 37.
    N. A. Sakhibullin, Modeling Methods in Astrophysics (FEN, Kazan’, 1997) [in Russian].Google Scholar
  38. 38.
    L. Sbordone, P. Bonifacio, F. Castelli, and R. L. Kurucz, Mem. Soc. Astron. It. Suppl. 5, 93 (2004).Google Scholar
  39. 39.
    R. P. Schiavon, C. Batalha, and B. Barbuy, Astron. Astrophys. 301, 840 (1995).ADSGoogle Scholar
  40. 40.
    J. H. M. M. Schmitt, J. Robrade, J.-U. Ness, et al., Astron. Astrophys. 432, L35 (2005).ADSCrossRefGoogle Scholar
  41. 41.
    T. Schöning and K. Butler,, Astron. Astrophys. Suppl. Ser. 78, 551 (1989).ADSGoogle Scholar
  42. 42.
    M. D. Smith, Astron. Astrophys. 287, 523 (1994).ADSGoogle Scholar
  43. 43.
    H. C. Stempels and N. Piskunov, Astron. Astrophys. 408, 693 (2003).ADSCrossRefGoogle Scholar
  44. 44.
    L. A. Vainshtein, I. I. Sobelman, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Nauka, Moscow, 1979; Springer, New York, 2002).Google Scholar
  45. 45.
    G. V. Zaitseva, A. G. Shcherbakov, and N. A. Stepanova, Sov. Astron. Lett. 16, 350 (1990).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. V. Dodin
    • 1
    • 2
  • S. A. Lamzin
    • 1
    • 2
  • T. M. Sitnova
    • 1
    • 2
  1. 1.Sternberg Astronomical InstituteMoscowRussia
  2. 2.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations