Advertisement

Astronomy Letters

, Volume 38, Issue 12, pp 771–782 | Cite as

Dependence of kinematics on the age of stars in the solar neighborhood

  • G. A. Gontcharov
Article

Abstract

The variations of kinematic parameters with age are considered for a sample of 15 402 thin-disk O-F stars with accurate α, δ, µ, and π > 3 mas from the Hipparcos catalogue and radial velocities from the PCRV catalogue. The ages have been calculated from the positions of the stars on the Hertzsprung-Russell diagram relative to the isochrones from the Padova database by taking into account the extinction from the previously constructed 3D analytical model and extinction coefficient R V from the 3D map of its variations. Smooth, mutually reconciled variations of the velocity dispersions σ(U), σ(V), σ(W), solar motion components U , V , W , Ogorodnikov-Milne model parameters, Oort constants, and vertex deviation l xy consistent with all of the extraneous results for which the stellar ages were determined have been found. The velocity dispersion variations are well fitted by power laws the deviations from which are explained by the influence of predominantly radial stellar streams: Sirius, Hyades, α Cet/Wolf 630, and Hercules. The accuracy of determining the solar motion relative to the local standard of rest is shown to be fundamentally limited due to these variations of stellar kinematics. The deviations of our results from those of Dehnen and Binney (1998), the Geneva-Copenhagen survey of dwarfs, and the Besan con model of the Galaxy are explained by the use of PCRV radial velocities with corrected systematic errors.

Keywords

Hertzsprung-Russell diagram stellar kinematics Galactic solar neighborhood 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Antoja, F. Figueras, D. Fernandez, et al., Astron. Astrophys. 490, 135 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    G. Bertelli, L. Girardi, P. Marigo, et al., Astron. Astrophys. 484, 815 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    V. V. Bobylev, A. S. Stepanishchev, A. T. Bajkova, and G. A. Gontcharov, Astron. Lett. 35, 836 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    V. V. Bobylev, A. T. Bajkova, A. A. Myullyari, Astron. Lett. 36, 27 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    J. Bovy and D. W. Hogg, Astrophys. J. 717, 617 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    G. Carraro, R. De la Fuente Marcos, S. Villanova, et al., Astron. Astrophys. 466, 931 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    B. Chen, R. Asiain, F. Figueras, et al., Astron. Astrophys. 318, 29 (1997).ADSGoogle Scholar
  8. 8.
    W. Dehnen and J. Binney, Mon. Not. R. Astron. Soc. 294, 429 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    ESA, Hipparcos and Tycho Catalogues (ESA, 1997).Google Scholar
  10. 10.
    B. Famaey, A. Jorissen, X. Luri, et al., Astron.Astrophys. 430, 165 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    C. Francis and E. Anderson, New Astron. 14, 615 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    A. E. Gomez, S. Grenier, S. Udry, et al., in Proceedings of the ESA Symp. “Hipparcos-Venice 97,” ESA SP-402, Ed. by B. Battrick (ESA Publ. Division, c/o ESTEC, Noordwijk, The Netherlands, 1997), p. 621.Google Scholar
  13. 13.
    G. A. Gontcharov, Astron. Lett. 32, 759 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    G. A. Gontcharov, Astron. Lett. 35, 780 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    G. A. Gontcharov, Astron. Lett. 37, 707 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    G. A. Gontcharov, Astron. Lett. 38, 12 (2012a).ADSCrossRefGoogle Scholar
  17. 17.
    G. A. Gontcharov, Astron. Lett. 38, 87 (2012b).ADSCrossRefGoogle Scholar
  18. 18.
    G. A. Gontcharov, Astron. Lett. 38, 694 (2012c).ADSCrossRefGoogle Scholar
  19. 19.
    G.A. Gontcharov, A. T. Bajkova, P. N. Fedorov, et al., Mon. Not. R. Astron. Soc. 413, 1581 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    E. Høg, C. Fabricius, V. V. Makarov, et al., Astron. Astrophys. 355, L27 (2000).ADSGoogle Scholar
  21. 21.
    J. Holmberg, B. Nordström, and J. Andersen, Astron. Astrophys. 475, 519 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    J. Holmberg, B. Nordström, and J. Andersen, Astron. Astrophys. 501, 941 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    F. van Leeuwen, Astron. Astrophys. 474, 653 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    P. Marigo, L. Girardi, A. Bressan, et al., Astron. Astrophys. 482, 883 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    R. A. Mendez, I. Platais, T. M. Girard, et al., Astron. J. 119, 813 (2000).ADSCrossRefGoogle Scholar
  26. 26.
    F. Mignard, Astron. Astrophys. 354, 522 (2000).ADSGoogle Scholar
  27. 27.
    B. Nordström, M. Mayor, J. Andersen, et al., Astron. Astrophys. 418, 989 (2004).ADSCrossRefGoogle Scholar
  28. 28.
    P. P. Parenago, Astron. Zh. 27, 150 (1950).Google Scholar
  29. 29.
    M. Perryman, Astronomical Applications of Astrometry (Cambridge Univ. Press, Cambridge, 2009).Google Scholar
  30. 30.
    A. C. Robin, C. Reyle, S. Derriere, et al., Astron. Astrophys. 409, 523 (2003).ADSCrossRefGoogle Scholar
  31. 31.
    R. Schönrich, J. Binney, and W. Dehnen, Mon. Not. R. Astron. Soc. 403, 1829 (2010).ADSCrossRefGoogle Scholar
  32. 32.
    J. Torra, D. Fernandez, and F. Figueras, Astron. Astrophys. 359, 82 (2000).ADSGoogle Scholar
  33. 33.
    Z. Zhu, Publ. Astron. Soc. Jpn. 52, 1133 (2000).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Pulkovo Astronomical ObservatoryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations