Astronomy Letters

, Volume 37, Issue 5, pp 311–331 | Cite as

Vertical structure of the outer accretion disk in persistent low-mass X-ray binaries

  • A. V. Mescheryakov
  • N. I. Shakura
  • V. F. Suleimanov
Article

Abstract

We have investigated the influence of X-ray irradiation on the vertical structure of the outer accretion disk in low-mass X-ray binaries by performing a self-consistent calculation of the vertical structure and X-ray radiation transfer in the disk. Penetrating deep into the disk, the field of scattered X-ray photons with energy E ≳ 10 keV exerts a significant influence on the vertical structure of the accretion disk at a distance R ≳ 1010 cm from the neutron star. At a distance R ∼ 1011 cm, where the total surface density in the disk reaches Σ0 ∼ 20 g cm−2, X-ray heating affects all layers of an optically thick disk. The X-ray heating effect is enhanced significantly in the presence of an extended atmospheric layer with a temperature Tatm ≈ (2–3) × 106 K above the accretion disk. We have derived simple analytic formulas for the disk heating by scattered X-ray photons using an approximate solution of the transfer equation by the Sobolev method. This approximation has a ≲10% accuracy in the range of X-ray photon energies E < 20 keV.

Keywords

low-mass X-ray binaries accretion disks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. W. Allen, Astrophysical Quantities (Athlone Press, Univ. London, 1973).Google Scholar
  2. 2.
    N. R. Badnell, M. A. Bautista, K. Butler, et al., Mon. Not. R. Astron. Soc. 360, 458 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    P. B. Bosma and W. A. Rooij, Astron. Astrophys. 126, 283 (1983).ADSGoogle Scholar
  4. 4.
    S. Chandrasekhar, Radiative Transfer (Clarendon, Oxford, 1950).MATHGoogle Scholar
  5. 5.
    G. Dubus, J.-P. Lasota, J.-M. Hameury, and P. Charles, Mon. Not. R. Astron. Soc. 303, 139 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Esin, E. Kuulkers, J. E. McClintock, and R. Narayan, Astrophys. J. 532, 1069 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    M. Gilfanov and V. Arefyev, astro-ph/0501215 (2005).Google Scholar
  8. 8.
    M. A. Jimenez-Garate, J. C. Raymond, and D. A. Liedahl, Astrophys. J. 581, 1297 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    J. de Jong, J. van Paradijs, and T. Augusteijn, Astron. Astrophys. 314, 484 (1996).ADSGoogle Scholar
  10. 10.
    Y.-K. Ko and T. R. Kallman, Astrophys. J. 431, 273 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    Q. Z. Liu, J. van Paradijs, and E. P. J. van den Heuvel, Astron. Astrophys. 368, 1021 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    V.M. Lyutyi and R. A. Sunyaev, Sov. Astron. 20, 290 (1976).ADSGoogle Scholar
  13. 13.
    F. Meyer and E. Meyer-Hofmeister, Astron. Astrophys. 106, 34 (1982).ADSGoogle Scholar
  14. 14.
    R. Morrison and D. McCammon, Astrophys. J. 270, 119 (1983).ADSCrossRefGoogle Scholar
  15. 15.
    D. I. Nagirner, Lectures on the Theory of Radiative Transfer (SPb. Univ., St. Petersburg, 2001) [in Russian].Google Scholar
  16. 16.
    L. A. Pozdnyakov, I. M. Sobol, and R. A. Syunyaev, Astrophys. Space Phys. Rev. 2, 189 (1983).ADSGoogle Scholar
  17. 17.
    W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN. The Art of Scientific Computing (Cambridge Univ., Cambridge, 1992).MATHGoogle Scholar
  18. 18.
    D. Psaltis, Astrophys. J. 574, 306 (2002).ADSCrossRefGoogle Scholar
  19. 19.
    J. C. Raymond, Astrophys. J. 412, 267 (1993).ADSCrossRefGoogle Scholar
  20. 20.
    N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).ADSGoogle Scholar
  21. 21.
    V. V. Sobolev, Radiative Energy Transfer in Stellar and Planetary Atmospheres (GITTL, Moscow, 1956) [in Russian].Google Scholar
  22. 22.
    V. V. Sobolev, Sov. Astron. 12, 420 (1968).ADSGoogle Scholar
  23. 23.
    V. Suleimanov, F. Meyer, and E. Meyer-Hofmeister, Astron. Astrophys. 350, 63 (1999).ADSGoogle Scholar
  24. 24.
    V. Suleimanov, F. Meyer, and E. Meyer-Hofmeister, Astron. Astrophys. 401, 1009 (2003).ADSCrossRefGoogle Scholar
  25. 25.
    V. F. Suleimanov, G. V. Lipunova, and N. I. Shakura, Astron. Rep. 51, 549 (2007).ADSCrossRefGoogle Scholar
  26. 26.
    V. F. Suleimanov, G. V. Lipunova, and N. I. Shakura, Astron. Astrophys. 491, 267 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    Y. Tuchman, S. Mineshige, and J. C. Wheeler, Astrophys. J. 359, 164 (1990).ADSCrossRefGoogle Scholar
  28. 28.
    S. D. Vrtilek, J. C. Raymond, M. R. Garcia, et al., Astron. Astrophys. 235, 162 (1990).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. V. Mescheryakov
    • 1
  • N. I. Shakura
    • 2
  • V. F. Suleimanov
    • 3
    • 4
  1. 1.Space Research InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Kazan Federal UniversityKazanRussia
  4. 4.Institute of Astronomy and AstrophysicsTübingen UniversityTübingenGermany

Personalised recommendations