Astronomy Letters

, Volume 36, Issue 12, pp 848–894 | Cite as

Spread of matter over a neutron-star surface during disk accretion: Deceleration of rapid rotation

  • N. A. Inogamov
  • R. A. Sunyaev


The problem of disk accretion onto the surface of a neutron star with a weak magnetic field at a luminosity exceeding several percent of the Eddington one is reduced to the problem of the braking of a hypersonic flow with a velocity that is 0.4–0.5 of the speed of light above the base of the spreading layer-a dense atmosphere made up of previously fallen matter. We show that turbulent braking in the Prandtl-Karman model with universally accepted coefficients for terrestrial conditions and laboratory experiments and a ladder of interacting gravity waves in a stratified quasi-exponential atmosphere at standard Richardson numbers lead to spin-up of the massive zone that extends to the “ocean“ made up of a plasma with degenerate electrons. Turbulent braking in the ocean at the boundary with the outer solid crust reduces the rotation velocity to the solid-body rotation velocity of the star. This picture should lead to strong heating of deep atmospheric layers and to the switch-off of the explosive helium burning mechanism. Obviously, a more efficient mechanism for the dissipation of a strong azimuthal flow in the atmosphere should operate in X-ray bursters. We show that a giant solitary gravity wave in the atmosphere can lead to energy dissipation and to a sharp, abrupt decrease in azimuthal velocity in fairly rarefied atmospheric layers above the zone of explosive helium burning nuclear reactions. We discuss the reasons why this wave that has no direct analog in the Earth’s atmosphere and ocean appears and its stability. We pose the question as to whether neutron stars with massive atmospheres spun up to high velocities by accreting matter from a disk can exist among the observed Galactic X-ray sources.


disk accretion neutron stars boundary layer X-ray sources X-ray bursters low-mass X-ray binaries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Babkovskaya, A. Brandenburg, and J. Poutanen, Mon. Not. R. Astron. Soc. 386, 1038 (2008).CrossRefADSGoogle Scholar
  2. 2.
    D. Chakrabarty and E. Morgan, Nature 394, 346 (1998).CrossRefADSGoogle Scholar
  3. 3.
    R. L. Cooper and R. Narayan, Astrophys. J. 657, L29 (2007).CrossRefADSGoogle Scholar
  4. 4.
    L. J. Dursi, A. C. Calder, A. Alexakis, et al., arXiv:astro-ph/0207595 (2002).Google Scholar
  5. 5.
    D. K. Galloway, M. P. Muno, J. M. Hartman, et al., Astrophys. J. Suppl. Ser. 179, 360 (2008).CrossRefADSGoogle Scholar
  6. 6.
    M. Gilfanov, M. Revnivtsev, R. Sunyaev, and E. Churazov, Astron. Astrophys. 338, L83 (1998).ADSGoogle Scholar
  7. 7.
    M. Gilfanov, M. Revnivtsev, and S. Molkov, Astron. Astrophys. 410, 217 (2003).CrossRefADSGoogle Scholar
  8. 8.
    S. A. Grebenev and R. A. Sunyaev, Astron. Lett. 28, 150 (2002).CrossRefADSGoogle Scholar
  9. 9.
    N. A. Inogamov and R. A. Sunyaev, Pis’ma Astron. Zh. 25, 323 (1999) [Astron. Lett. 25, 269 (1999)].Google Scholar
  10. 10.
    N. A. Inogamov and R. A. Sunyaev, Pis’ma Astron. Zh. (2011) (in press).Google Scholar
  11. 11.
    R. Kippenhahn and H.-C. Thomas, Astron. Astrophys. 63, 265 (1978).ADSGoogle Scholar
  12. 12.
    M. van der Klis, in Compact Stellar X-ray Sources, Ed. by W. H. G. Lewin and M. van der Klis (Cambridge Univ., Cambridge, 2006), p. 39; arXiv:astroph/0410551.CrossRefGoogle Scholar
  13. 13.
    K. R. Lang, Astrophysical Formulae (Springer, Berlin, Heidelberg, New York, 1974).Google Scholar
  14. 14.
    W. H. G. Lewin, J. van Paradijs, and R. E. Taam, Space Sci. Rev. 62, 223 (1993).CrossRefADSGoogle Scholar
  15. 15.
    M. Linares, A. Watts, D. Altamirano, et al., Astrophys. J. Lett. 719, L84 (2010).CrossRefADSGoogle Scholar
  16. 16.
    F. Peng, E. F. Brown, and J.W. Truran, Astrophys. J. 654, 1022 (2007).CrossRefADSGoogle Scholar
  17. 17.
    R. Pophamand R. A. Sunyaev, Astrophys. J. 547, 355 (2001).CrossRefADSGoogle Scholar
  18. 18.
    M. G. Revnivtsev and M. R. Gilfanov, Astron. Astrophys. 453, 253 (2006).CrossRefADSGoogle Scholar
  19. 19.
    R. Rosner, A. Alexakis, Y.-N. Young, et al., arXiv:astro-ph/0110684 (2001).Google Scholar
  20. 20.
    P. Savolainen, D.C. Hannikainen, O. Vilhu, et al., Mon. Not. R. Astron. Soc. 393, 569 (2009).CrossRefADSGoogle Scholar
  21. 21.
    H. Schlichting, Grenzschicht-Theorie (G. Braun, Karlsruhe, 1965) [in German].zbMATHGoogle Scholar
  22. 22.
    N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).ADSGoogle Scholar
  23. 23.
    N. R. Sibgatullin and R. A. Sunyaev, Astron. Lett. 26, 699 (2000).CrossRefADSGoogle Scholar
  24. 24.
    A. Spitkovsky, Y. Levin, and G. Ushomirsky, Astrophys. J. 566, 1018 (2002).CrossRefADSGoogle Scholar
  25. 25.
    L. Spitzer, Phys. of Fully Ionized Gases, 2nd rev. ed. (Intersci. Publ., New York, 1962).Google Scholar
  26. 26.
    T. Strohmayer and L. Bildsten, in Compact Stellar X-ray Sources, Ed. by W. H. G. Lewin and M. van der Klis (Cambridge Univ., Cambridge, 2006), p. 113.CrossRefGoogle Scholar
  27. 27.
    V. Suleimanov and J. Poutanen, Mon. Not. R. Astron. Soc. 369, 2036 (2006).CrossRefADSGoogle Scholar
  28. 28.
    R. Sunyaev and M. Revnivtsev, Astron. Astrophys. 358, 617 (2000).ADSGoogle Scholar
  29. 29.
    R. A. Sunyaev and L. G. Titarchuk, Astron. Astrophys. 86, 121 (1980).ADSGoogle Scholar
  30. 30.
    R. A. Sunyaev and N. I. Shakura, Sov. Astron. Lett. 12, 117 (1986).ADSGoogle Scholar
  31. 31.
    J. L. Tassoul, Theory of Rotating Stars (Princeton Univ., Princeton, 1978; Mir, Moscow, 1982).Google Scholar
  32. 32.
    S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972).Google Scholar
  33. 33.
    R. Wijnands and M. van der Klis, Nature 394, 344 (1998).CrossRefADSGoogle Scholar
  34. 34.
    J. J. M. in’t Zand, J. Heise, J. M. Muller, et al., Astron. Astrophys. 331, L25 (1998).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Max Planck Institut für AstrophysikGarchingGermany
  3. 3.Space Research InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations