Astronomy Letters

, Volume 36, Issue 12, pp 835–847 | Cite as

Supermassive black hole in an elliptical galaxy: Accretion of a hot gas with a low but finite angular momentum

Article

Abstract

The accretion of hot slowly rotating gas onto a supermassive black hole is considered. The important case where the velocities of turbulent pulsations at the Bondi radius r B are low, compared to the speed of sound c s, is studied. Turbulence is probably responsible for the appearance of random average rotation. Although the angular momentum at r B is low, it gives rise to the centrifugal barrier at a depth r c = l 2 /GM BHr B, that hinders supersonic accretion. The numerical solution of the problem of hot gas accretion with finite angular momentum is found taking into account electron thermal conductivity and bremsstrahlung energy losses of two temperature plasma for density and temperature near Bondi radius similar to observed in M87 galaxy. The saturation of the Spitzer thermal conductivity was also taken into account. The parameters of the saturated electron thermal conductivity were chosen similar to the parameters used in the numerical simulations of interaction of the strong laser beam radiation with plasma targets. These parameters are confirmed in the experiments. It is shown that joint action of electron thermal conductivity and free-free radiation leads to the effective cooling of accreting plasma and formation of the subsonic settling of accreting gas above the zone of a centrifugal barrier. A toroidal condensation and a hollow funnel that separates the torus from the black hole emerge near the barrier. The barrier divides the flow into two regions: (1) the settling zone with slow subKeplerian rotation and (2) the zone with rapid supersonic nearly Keplerian rotation. Existence of the centrifugal barrier leads to significant decrease of the accretion rate in comparison with the critical Bondi solution for γ = 5/3 for the same values of density and temperature of the hot gas near Bondi radius. Shear instabilities in the torus and related friction cause the gas to spread slowly along spirals in the equatorial plane in two directions.As a result, outer (r > r c) and inner (r < r c) disks are formed. The gas enters the immediate neighborhood of the black hole or the zone of the internal ADAF flow along the accretion disk (r < r c). Since the angular momentum is conserved, the outer disk removes outward an excess of angular momentum along with part of the matter falling into the torus. It is possible, that such outer Keplerian disk was observed by Hubble Space Telescope around the nucleus of the M87 galaxy in the optical emission lines. We discuss shortly the characteristic times during which the accretion of the gas with developed turbulence should lead to the changes in the orientation of the torus, accretion disk and, possibly, of the jet.

Keywords

Bondi accretion disk accretion elliptic galaxies X-ray radiation of galaxies supermassive black holes electron thermal conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Abramowicz, M. Jaroszynski, and M. Sikora, Astron. Astrophys. 63, 221 (1978).MathSciNetADSMATHGoogle Scholar
  2. 2.
    C. A. Back, D. H. Kalantar, R. L. Kauffman, et al., Phys. Rev. Lett. 77, 4350 (1996).CrossRefADSGoogle Scholar
  3. 3.
    S. A. Balbus and J. F. Hawley, Astrophys. J. 376, 214 (1991).CrossRefADSGoogle Scholar
  4. 4.
    R. D. Blandford and R. L. Znajek, Mon. Not. R. Astron. Soc. 179, 433 (1977).ADSGoogle Scholar
  5. 5.
    E. Churazov, R. Sunyaev, W. Forman, et al., Mon. Not. R. Astron. Soc. 332, 729 (2002).CrossRefADSGoogle Scholar
  6. 6.
    T. Di Matteo, S.W. Allen, A. C. Fabian, et al., Astrophys. J. 582, 133 (2003).CrossRefADSGoogle Scholar
  7. 7.
    E. Emsellem, M. Cappellari, D. Krajnovic, et al., Mon. Not. R. Astron. Soc. 379, 401 (2007).CrossRefADSGoogle Scholar
  8. 8.
    A. C. Fabian and M. J. Rees, Mon. Not. R. Astron. Soc. 277, L55 (1995).ADSGoogle Scholar
  9. 9.
    H.C. Ford, R. J. Harms, Z. I. Tsvetanov, et al., Astrophys. J. 435, L27 (1994).CrossRefADSGoogle Scholar
  10. 10.
    W. Forman, C. Jones, E. Churazov, et al., Astrophys. J. 665, 1057 (2007).CrossRefADSGoogle Scholar
  11. 11.
    K. Gebhardt and J. Thomas, arXiv:0906.1492v2 [astro-ph.CO] (2009).Google Scholar
  12. 12.
    R. J. Harms, H. C. Ford, Z. I. Tsvetanov, et al., Astrophys. J. 435, L35 (1994).CrossRefADSGoogle Scholar
  13. 13.
    S. Kato, J. Fukue, and S. Mineshige, Black-Hole Accretion Disks: Towards a New Paradigm (Kyoto Univ., Kyoto, 2008).Google Scholar
  14. 14.
    P. I. Kolykhalov and R. A. Sunyaev, Pis’ma Astron. Zh. 6, 680 (1980) [Sov. Astron. Lett. 6, 357 (1980)].ADSGoogle Scholar
  15. 15.
    M. Kozlowski, M. Jaroszynski, and M. Abramowicz, Astron. Astrophys. 63, 209 (1978).MathSciNetADSMATHGoogle Scholar
  16. 16.
    E. V. Levich and R. A. Syunyaev, Astron. Zh. 48, 461 (1971) [Sov. Astron. 15, 363 (1971)].ADSGoogle Scholar
  17. 17.
    D. N. Limber, Astrophys. J. 140, 1391L (1964).CrossRefADSGoogle Scholar
  18. 18.
    F. Macchetto, A. Marconi, D. J. Axon, et al., Astrophys. J. 489, 579 (1997).CrossRefADSGoogle Scholar
  19. 19.
    M. Miyoshi, J. Moran, J. Herrnstein, et al., Nature 373, 127 (1995).CrossRefADSGoogle Scholar
  20. 20.
    R. Narayan and I. Yi, Astrophys. J. 428, L13 (1994).CrossRefADSGoogle Scholar
  21. 21.
    F.N. Owen, J.A. Eilek, and N. E. Kassim, Astrophys. J. 543, 611 (2000).CrossRefADSGoogle Scholar
  22. 22.
    B. Paczynski and P. J. Witta, Astron. Astrophys. 88, 23 (1980).ADSGoogle Scholar
  23. 23.
    V. F. Schwartzman, Astron. Zh. 48, 479 (1971) [Sov. Astron. 15, 377 (1971)].ADSGoogle Scholar
  24. 24.
    N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).ADSGoogle Scholar
  25. 25.
    L. Spitzer, Phys. of Fully Ionized Gases, 2nd ed. (Intersci., New York, 1962), p. 170.Google Scholar
  26. 26.
    V. Springel, T. Di Matteo, and L. Hernquist, Mon. Not. R. Astron. Soc. 361, 776 (2005).CrossRefADSGoogle Scholar
  27. 27.
    K. P. Stanyukovich, Unsteady Motion of Continuous Media (Pergamon, New York, 1960; Nauka, Moscow, 1971).Google Scholar
  28. 28.
    E. P. Velikhov, Zh. Eksp. Teor. Fiz. 36, 1398 (1959) [Sov. Phys. JETP 9, 995 (1959)].Google Scholar
  29. 29.
    A. J. Young, A. S. Wilson, and C. G. Mundell, Astrophys. J. 579, 560 (2002).CrossRefADSGoogle Scholar
  30. 30.
    N. L. Zakamska and R. Narayan, Astrophys. J. 582, 162 (2003).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Max Planck Institut für AstrophysikGarchingGermany
  3. 3.Space Research InstituteMoscowRussia

Personalised recommendations