Advertisement

Astronomy Letters

, Volume 36, Issue 11, pp 773–779 | Cite as

Mechanism for the suppression of intermediate-mass black holes

  • V. I. Dokuchaev
  • Yu. N. Eroshenko
  • S. G. Rubin
  • D. A. Samarchenko
Article

Abstract

A model for the formation of supermassive primordial black holes in galactic nuclei with the simultaneous suppression of the formation of intermediate-mass black holes is presented. A bimodal mass function for black holes formed through phase transitions in a model with a “Mexican hat” potential has been found. The classical motion of the phase of a complex scalar field during inflation has been taken into account. Possible observational manifestations of primordial black holes in galaxies and constraints on their number are discussed.

Key words

cosmology inflation black holes accretion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. R. J. Antonucci, Ann. Rev. Astron. Astrophys. 31, 473 (1993).ADSGoogle Scholar
  2. 2.
    C. Bambi, D. Spolyar, A. D. Dolgov, et al., arXiv:astro-ph0812.0585v2 (2008).Google Scholar
  3. 3.
    H. Baumgardt, J. Makino, P. Hut, et al., Astrophys. J. 589, L25 (2003).CrossRefADSGoogle Scholar
  4. 4.
    M. C. Begelman, R. D. Blandford, and M. J. Rees, Rev. Mod. Phys. 56, 255 (1984).CrossRefADSGoogle Scholar
  5. 5.
    V. Dokuchaev, Yu. Eroshenko, and S. Rubin, arXiv:astro-ph0709.0070v2 (2007).Google Scholar
  6. 6.
    V. Dokuchaev, Yu. Eroshenko, and S. Rubin, Grav. Cosmol. 11, 99 (2005).ADSGoogle Scholar
  7. 7.
    V. I. Dokuchaev, Yu. N. Eroshenko, and S. G. Rubin, Astron. Zh. 85, 867 (2008) [Astron. Rep. 52, 779 (2008)].Google Scholar
  8. 8.
    V. I. Dokuchaev and Yu. N. Eroshenko, Pis’ma Astron. Zh. 27, 883 (2001) [Astron. Lett. 27, 759 (2001)].Google Scholar
  9. 9.
    V. I. Dokuchaev and Yu. N. Eroshenko, Astron. Astrophys. Trans. 22, 727 (2003).CrossRefADSGoogle Scholar
  10. 10.
    V. I. Dokuchaev and L. M. Ozernoy, Astron. Astrophys. 111, 16 (1982).zbMATHADSGoogle Scholar
  11. 11.
    V. I. Dokuchaev, Yu. N. Eroshenko, and S. G. Rubin, Pis’ma Astron. Zh. 35, 1 (2009) [Astron. Lett. 35, 143 (2009)].Google Scholar
  12. 12.
    V. I. Dokuchaev, Usp. Fiz. Nauk 161, 1 (1991) [Sov. Phys. Usp. 34, 447 (1991)].Google Scholar
  13. 13.
    A. Dolgov and K. Freese, Phys. Rev. D 51, 2693 (1995).CrossRefADSGoogle Scholar
  14. 14.
    A. D. Dolgov, M. Kawasaki, and N. Kevlishvili, Nucl. Phys. B 807, 229 (2009).zbMATHCrossRefADSGoogle Scholar
  15. 15.
    A. Dolgov and L. Silk, Phys. Rev. D 47, 4244 (1993).CrossRefADSGoogle Scholar
  16. 16.
    L. Ferrarese and H. Ford, arXiv:astro-ph/0411247 (2004).Google Scholar
  17. 17.
    The Galactic Black Holes, Series in High Energy Physics, Cosmology, and Gravitation, Ed. by H. Falcke and F.W. Hehl (IOP Publ., London, 2003).Google Scholar
  18. 18.
    K. Gebhardt, R.M. Rich, and L. C. Ho, Astrophys. J. 578, L41 (2002).CrossRefADSGoogle Scholar
  19. 19.
    M. G. Haehnelt and G. Kauffmann, Mon. Not. R. Astron. Soc. 336, L61 (2002).CrossRefADSGoogle Scholar
  20. 20.
    G. Illingworth and I. R. King, Astrophys. J. 218, L109 (1977).CrossRefADSGoogle Scholar
  21. 21.
    R. R. Islam, J. E. Taylor, and J. Silk, Mon. Not. R. Astron. Soc. 340, 647 (2003).CrossRefADSGoogle Scholar
  22. 22.
    N. Kawakatu, T. R. Saitoh, and K. Wada, Astrophys. J. 628, 129 (2005).CrossRefADSGoogle Scholar
  23. 23.
    M. Yu. Khlopov and S. G. Rubin, Cosmological Pattern of Microphysics in the Inflationary Universe (Kluwer Acad., Dordrecht, 2004), v. 144.zbMATHGoogle Scholar
  24. 24.
    M. Yu. Khlopov, S. G. Rubin, and A. S. Sakharov, Astropart. Phys. 23, 265 (2005).CrossRefADSGoogle Scholar
  25. 25.
    A. King, Mon. Not. R. Astron. Soc. 385, L113 (2008).CrossRefADSGoogle Scholar
  26. 26.
    B. Lanzoni, E. Dalessandro, F. R. Ferraro, et al., Astrophys. J. 668, L139 (2007).CrossRefADSGoogle Scholar
  27. 27.
    K. J. Mack, J. P. Ostriker, and M. Ricotti, Astrophys. J. 665, 1277 (2007).CrossRefADSGoogle Scholar
  28. 28.
    M. Mapelli, A. Ferrara, and N. Rea, Mon. Not. R. Astron. Soc. 368, 1340 (2006).CrossRefADSGoogle Scholar
  29. 29.
    R. P. van der Marel and J. Anderson, arXiv:0905.0638 (2009).Google Scholar
  30. 30.
    B. J. McNamara, T. E. Harrison, and J. Anderson, Astrophys. J. 595, 187 (2003).CrossRefADSGoogle Scholar
  31. 31.
    H. Mii and T. Totani, Astrophys. J. 628, 873 (2005).CrossRefADSGoogle Scholar
  32. 32.
    M. C. Miller and E. J. M. Colbert, Int. J. Mod. Phys. D 13, 1 (2004).zbMATHCrossRefADSGoogle Scholar
  33. 33.
    E. Noyola, K. Gebhardt, and M. Bergmann, Astrophys. J. 676, 1008 (2008).CrossRefADSGoogle Scholar
  34. 34.
    L. M. Ozernoy and V. I. Dokuchaev, Astron. Astrophys. 111, 1 (1982).zbMATHADSGoogle Scholar
  35. 35.
    M. J. Rees, Ann. Rev. Astron. Astrophys. 22, 471 (1984).CrossRefADSGoogle Scholar
  36. 36.
    S.-J. Rey, Nucl. Phys. B 284, 706 (1987).CrossRefADSGoogle Scholar
  37. 37.
    T. P. Roberts, Astrophys. Space Sci. 311, 203 (2007).CrossRefADSGoogle Scholar
  38. 38.
    S. G. Rubin, M. Y. Khlopov, and A. S. Sakharov, Grav. Cosmol. S 6, 51 (2000).Google Scholar
  39. 39.
    S. G. Rubin, A. S. Sakharov, and M. Yu. Khlopov, Zh. Éksp. Teor. Fiz. 119, 1067 (2001) [JETP 92, 921 (2001)].Google Scholar
  40. 40.
    S. G. Rubin, A. S. Sakharov, and M. Yu. Khlopov, Zh. Éksp. Teor. Fiz. 119, 1067 (2001) [JETP 92, 921 (2001)].Google Scholar
  41. 41.
    A. Starobinsky, Phys. Lett. B 117, 175 (1982).CrossRefADSGoogle Scholar
  42. 42.
    T. E. Strohmayer and R. F. Mushotzky, Astrophys. J. (in press)Google Scholar
  43. 43.
    T. E. Strohmayer, arXiv:astro-ph.HE0911.1339 (2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. I. Dokuchaev
    • 1
  • Yu. N. Eroshenko
    • 1
  • S. G. Rubin
    • 2
  • D. A. Samarchenko
    • 2
  1. 1.Institute for Nuclear ResearchRussian Academy of SciencesMoscowRussia
  2. 2.“Moscow Engineering Physics Institute” National Research Nuclear UniversityMoscowRussia

Personalised recommendations