Astronomy Letters

, Volume 36, Issue 10, pp 687–706 | Cite as

Heating of the circumstellar medium by gamma-ray burst prompt emission

  • D. A. Bad’in
  • S. I. Blinnikov
  • K. A. Postnov


We describe the technique and results of our numerical simulation of the effects related to the heating of the circumstellar medium by hard gamma-ray burst radiation using a modified STELLA radiation-hydrodynamics code. The code modification allows the processes of nonstationary heating and change in the state of the matter to be taken into account. We present the computed light curves and emergent gamma-ray, X-ray, and optical spectra for several models of the circumstellar medium (shells) with different geometrical sizes, densities, density profiles, chemical compositions, and temperatures. Depending on the model parameters, the total thermal and optical luminosities of the heated shell can reach 1047 and 1043 erg s−1, respectively. The presence of bumps in the X-ray and optical GRB afterglow light curves can be explained by such effects.

Key words

gamma-ray bursts afterglows numerical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. A. Bad’in, G. M. Beskin, G. Greko, et al., Pis’ma Astron. Zh. 35, 10 (2009) [Astron. Lett. 35, 7 (2009)].Google Scholar
  2. 2.
    D. Band, J. Matteson, L. Ford, et al., Astrophys. J. 413, 281 (1993).CrossRefADSGoogle Scholar
  3. 3.
    M. V. Barkov and G. S. Bisnovatyi-Kogan, Astron. Zh. 82, 685 (2005) [Astron. Rep. 49, 611 (2005)].Google Scholar
  4. 4.
    G. S. Bisnovatyi-Kogan and A. N. Timokhin, Astron. Zh. 74, 483 (1997) [Astron. Rep. 41, 423 (1997)].ADSGoogle Scholar
  5. 5.
    G. Björnsson, E. H. Gudmundsson, and G. Jóhannesson, Astrophys. J. 615, L77 (2004).CrossRefADSGoogle Scholar
  6. 6.
    S. I. Blinnikov, R. Eastman, O. S. Bartunov, et al., Astrophys. J. 496, 454 (1998).CrossRefADSGoogle Scholar
  7. 7.
    E. Costa, F. Frontera, and J. Heise, Nature 387, 783 (1997).CrossRefADSGoogle Scholar
  8. 8.
    N. Gehrels, E. Ramirez-Ruiz, and D. B. Fox, arXiv:0909.1531v1 (2009).Google Scholar
  9. 9.
    S. T. Holland, M. Weidinger, J. P. U. Fynbo, et al., Astrophys. J. 125, 2991 (2003).Google Scholar
  10. 10.
    D. Lazzati, E. Rossi, S. Covino, et al., Astron. Astrophys. 396, L5 (2002).CrossRefADSGoogle Scholar
  11. 11.
    P. Mészáros, Ann. Rev. Astron. Astrophys. 40, 137 (2002).CrossRefGoogle Scholar
  12. 12.
    J. van Paradijs, P. J. Groot, T. Galama, et al., Nature 386, 686 (1997).CrossRefADSGoogle Scholar
  13. 13.
    T. Piran, Rev. Mod. Phys. 76, 1143 (2004).CrossRefADSGoogle Scholar
  14. 14.
    K. A. Postnov, Usp. Fiz. Nauk 169, 545 (1999) [Phys. Usp. 42, 469 (1999)].CrossRefGoogle Scholar
  15. 15.
    K. A. Postnov, S. I. Blinnikov, D. I. Kosenko, and E. I. Sorokina, Nucl. Phys. B 132, 327 (2004).CrossRefGoogle Scholar
  16. 16.
    S. Yu. Sazonov, J. P. Ostriker, and R. A. Sunyaev, Mon. Not. R. Astron. Soc. 347, 144 (2003).CrossRefADSGoogle Scholar
  17. 17.
    R.-F. Shen, P. Kumar, and T. Piran, astro-ph.HE arXiv:0910.5727 (2009).Google Scholar
  18. 18.
    D. A. Verner and D. G. Yakovlev, Astron. Astrophys. Suppl. Ser. 109, 125 (1995).ADSGoogle Scholar
  19. 19.
    D. A. Verner, F. J. Ferland, K. T. Korista, and D. G. Yakovlev, Astrophys. J. 465, 487 (1996).CrossRefADSGoogle Scholar
  20. 20.
    S. E. Woosley and J. S. Bloom, Ann. Rev. Astron. Astrophys. 44, 507 (2006).CrossRefADSGoogle Scholar
  21. 21.
    S. E. Woosley, S. I. Blinnikov, and A. Heger, Nature 450, 390 (2007).CrossRefADSGoogle Scholar
  22. 22.
    W. Zhang and A. MacFadyen, Astrophys. J. 698, 1261 (2009).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • D. A. Bad’in
    • 1
  • S. I. Blinnikov
    • 2
  • K. A. Postnov
    • 1
  1. 1.Sternberg Astronomical InstituteMoscowRussia
  2. 2.Institute for Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations