Astronomy Letters

, Volume 36, Issue 8, pp 584–595

Three-dimensional reddening map for stars from 2MASS photometry: The method and the first results



The first results of the construction of a three-dimensional reddening map for stars within 1600 pc of the Sun are presented. Analysis of the distribution of 70 million stars from the 2MASS catalog with the most accurate photometry on the (J-Ks)-Ks diagram supplemented with Monte Carlo simulations has shown that one of the maxima of this distribution corresponds to F-type dwarfs and subgiants with a mean absolute magnitude MKs = 2m5. The shift of this maximum toward large J-Ks with increasing Ks reflects the reddening of these stars with increasing heliocentric distance. The distribution of the sample of stars over Ks, l, and b cells with a statistically significant number of stars in each cell corresponds to their distribution over three-dimensional spatial cells. As a result, the reddening E(J-Ks) has been determined with an accuracy of 0·m03 for spatial cells with a side of 100 pc. All of the known large absorbing clouds within 1600 pc of the Sun have manifested themselves in the results obtained. The distances to the near and far edges of the clouds have been determined with a relative accuracy of 15%. The cases where unknown clouds are hidden behind known ones on the same line of sight have been found. The distance dependence of reddening is considered for various Galactic latitudes and longitudes. The absorbing matter of the Gould Belt is shown to manifest itself at latitudes up to 40° and within 600 pc of the Sun. The size and influence of the Gould Belt may have been underestimated thus far. The absorbing matter at latitudes up to 60° and within 1600 pc of the Sun has been found to be distributed predominantly in the first and second quadrants in the southern hemisphere and in the third and fourth quadrants in the northern hemisphere. The warping of the absorbing layer in the near Galaxy apparently manifests itself in this way. A nonrandom orientation of the clouds relative to the Sun is possible. The mass of the baryonic dark matter in solar neighborhoods can then be considerably larger than is generally believed.

Key words

color-magnitude diagram interstellar medium Galactic solar neighborhoods dark clouds stellar reddening interstellar extinction baryonic dark matter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. G. Bochkarev and T. G. Sitnik, Astron. Astrophys. Suppl. Ser. 108, 237 (1985).Google Scholar
  2. 2.
    T. M. Dame, H. Ungerechts, R. S. Cohen, et al., Astrophys. J. 322, 706 (1987).CrossRefADSGoogle Scholar
  3. 3.
    R. Drimmel, A. Cabrera-Lavers, and M. LopezCorredoira, Astron. Astrophys. 409, 205 (2003).CrossRefADSGoogle Scholar
  4. 4.
    C.M. Dutra and E. Bica, Astron. Astrophys. 383, 631 (2002).CrossRefADSGoogle Scholar
  5. 5.
    ESA, Hipparcos and Tycho Catalogues (ESA, 1997).Google Scholar
  6. 6.
    L. Girardi, A. Bressan, G. Bertelli, et al., Astron. Astrophys. Suppl. Ser. 141, 371 (2000).CrossRefADSGoogle Scholar
  7. 7.
    G. C. Gomez, Astron. J. 132, 2376 (2006).CrossRefADSGoogle Scholar
  8. 8.
    G. A. Gontcharov, Pis’ma Astron. Zh. 34, 868 (2008) [Astron. Lett. 34, 785 (2008)].Google Scholar
  9. 9.
    G. A. Gontcharov, Pis’ma Astron. Zh. 35, 707 (2009a) [Astron. Lett. 35, 638 (2009a)].Google Scholar
  10. 10.
    G. A. Gontcharov, Pis’ma Astron. Zh. 35, 862 (2009b) [Astron. Lett. 35, 780 (2009b)].Google Scholar
  11. 11.
    M. Lopez-Corredoira, A. Cabrera-Lavers, F. Garzon, et al., Astron. Astrophys. 394, 883 (2002).CrossRefADSGoogle Scholar
  12. 12.
    D. J. Marshall, A. C. Robin, C. Reyle, et al., Astron. Astrophys. 453, 635 (2006).CrossRefADSGoogle Scholar
  13. 13.
    S. Nishiyama, T. Nagata, N. Kusakabe, et al., Astrophys. J. 638, 839 (2006).CrossRefADSGoogle Scholar
  14. 14.
    A. C. Robin, C. Reyle, S. Derriere, et al., Astron. Astrophys. 409, 523 (2003).CrossRefADSGoogle Scholar
  15. 15.
    M. F. Skrutskie, R. M. Cutri, R. Stiening, et al., Astron. J. 131, 1163 (2006); CrossRefADSGoogle Scholar
  16. 16.
    V. Straizys, C. J. Corbally, and V. Laugalys, Baltic Astron. 8, 355 (1999).ADSGoogle Scholar
  17. 17.
    L. Veltz, O. Bienayme, K. C. Freeman, et al., Astron. Astrophys. 480, 753 (2008).CrossRefADSGoogle Scholar
  18. 18.
    B. A. Wichman and I. D. Hill, Appl. Statist. 31, 188 (1982).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Pulkovo Astronomical ObservatoryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations