Advertisement

Astronomy Letters

, Volume 35, Issue 12, pp 816–827 | Cite as

Magnetic fields of coalescing neutron stars and the luminosity function of short gamma-ray bursts

  • K. A. Postnov
  • A. G. Kuranov
Article

Abstract

Coalescing binary neutron stars are the most promising candidates for detection by gravitational-wave detectors and are considered to be most promising for explaining the phenomenon of short gamma-ray bursts. The magnetic fields of neutron stars during their coalescence can produce a number of interesting observational manifestations and can affect significantly the shape of the gravitationalwave signal. In this paper, we model the distribution of magnetic fields in coalescing neutron stars by the population synthesis method using various assumptions about the initial parameters of the neutron stars and the evolution laws of their magnetic fields. We discuss possible electromagnetic phenomena preceding the coalescence of magnetized neutron stars and the effect of magnetic field energy on the shape of the gravitational-wave signal during the coalescence. For a log-normal (Gaussian in logarithm) distribution of the initialmagnetic fields consistent with the observations of radio pulsars, the distribution inmagnetic field energy during the coalescence is shown to describe adequately the observed luminosity function of short gamma-ray bursts under various assumptions about the pattern of field evolution and initial parameters of neutron stars.

Key words

gamma-ray emission gamma-ray bursts neutron stars electric and magnetic fields binary and multiple stars 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Abbott, R. Abbott, R. Adhikari, et al., Phys. Rev. D 77, 062002 (2008).CrossRefADSGoogle Scholar
  2. 2.
    K. Belczynski, V. Kalogera, F. A. Rasio, et al., Astrophys. J. Suppl. Ser. 174, 223 (2008).CrossRefADSGoogle Scholar
  3. 3.
    V. S. Beskin, Axisymmetric Steady Flows in Astrophysics (Nauka, Moscow, 2005) [in Russian].Google Scholar
  4. 4.
    D. Bhattacharya, Astrophys. Astron. 23, 67 (2002).CrossRefADSGoogle Scholar
  5. 5.
    G. S. Bisnovatyi-Kogan, Usp. Fiz. Nauk 176, 59 (2006) [Phys. Usp. 49, 53 (2006)].CrossRefGoogle Scholar
  6. 6.
    G. S. Bisnovatyi-Kogan and B. V. Komberg, Astron. Zh. 51, 373 (1974) [Sov. Astron. 18, 217 (1974)].ADSGoogle Scholar
  7. 7.
    S. I. Blinnikov, I. D. Novikov, T. A. Perevodchikova, and A. G. Polnarev, Pis’ma Astron. Zh. 10, 422 (1984) [Sov. Astron. Lett. 10, 177 (1984)].ADSGoogle Scholar
  8. 8.
    V. B. Braginskiĭ, Pis’ma Astron. Zh. 34, 558 (2008) [Astron. Lett. 34, 558 (2008)].Google Scholar
  9. 9.
    J. Braithwaite, Mon. Not. R. Astron. Soc. 386, 1947 (2008).CrossRefADSGoogle Scholar
  10. 10.
    A. E. Egorov and K. A. Postnov, Pis’ma Astron. Zh. 35, 272 (2009) [Astron. Lett. 35, 241 (2009)].Google Scholar
  11. 11.
    D. Eichler, M. Livio, T. Piran, and D. N. Schramm, Nature 340, 126 (1989).CrossRefADSGoogle Scholar
  12. 12.
    C. A. Faucher-Giguere and V. M. Kaspi, Astrophys. J. 643, 332 (2006).CrossRefADSGoogle Scholar
  13. 13.
    E. Flowers and M. A. Ruderman, Astrophys. J. 215, 302 (1977).CrossRefADSGoogle Scholar
  14. 14.
    P. L. Gonthier, R. Van Guilder, and A. K. Harding, Astrophys. J. 604, 775 (2004).CrossRefADSGoogle Scholar
  15. 15.
    E. V. Gotthelf and J. P. Halpern, AIP 983, 320 (2008).CrossRefADSGoogle Scholar
  16. 16.
    L. P. Grishchuk, V. M. Lipunov, K. A. Postnov, et al., Usp. Fiz. Nauk 171, 3 (2001) [Phys. Usp. 44, 3 (2001)].CrossRefGoogle Scholar
  17. 17.
    E. P. J. van den Heuvel, J. A. van Paradijs, and R. E. Taam, Nature 322, 153 (1986).CrossRefADSGoogle Scholar
  18. 18.
    E. P. J. van den Heuvel, in Proc. 5th Integral Science Workshop, Ed. by V. Schönfelder, G. Lichti, and C. Winkler, ESA SP-552 (Noordwijk, 2004), p. 185.Google Scholar
  19. 19.
    E. P. J. van den Heuvel, AIP Conf. Proc. 924, 598 (2007).CrossRefADSGoogle Scholar
  20. 20.
    G. B. Hobbs, D. R. Lorimer, A. G. Lyne, and N. Kramer, Mon. Not. R. Astron. Soc. 360, 974 (2005).CrossRefADSGoogle Scholar
  21. 21.
    G. B. Hobbs and R. N. Manchester, ATNF Pulsar Catalogue 1.20 (2009); http://www.atnf.csiro.au/research/pulsar/psrcat/.
  22. 22.
    D. A. Kann, S. Klose, B. Zhang, et al., arXiv:0804:1959 (2008).Google Scholar
  23. 23.
    S. Komissarov, N. Vlahakis, A. Königl, and M. V. Markov, Mon. Not. R. Astron. Soc. 394, 1182 (2009).CrossRefADSGoogle Scholar
  24. 24.
    S. R. Kulkarni, Astrophys. J. 306, L85 (1986).CrossRefADSGoogle Scholar
  25. 25.
    A. G. Kuranov, S. B. Popov, and K. A. Postnov, Mon. Not. R. Astron. Soc. 395, 2087 (2009).CrossRefADSGoogle Scholar
  26. 26.
    D. Lai, Lect. Not. Phys. 578, 424 (2001).CrossRefADSGoogle Scholar
  27. 27.
    V.M. Lipunov, Astrophysics of Neutron Stars (Nauka, Moscow, 1987; Springer, Heidelberg, 1992).Google Scholar
  28. 28.
    V. M. Lipunov and I. E. Panchenko, Astron. Astrophys. 312, 937 (1996).ADSGoogle Scholar
  29. 29.
    V. M. Lipunov, K. A. Postnov, and M. E. Prokhorov, Mon. Not. R. Astron. Soc. 288, 245 (1997).ADSGoogle Scholar
  30. 30.
    V. M. Lipunov, K. A. Postnov, M. E. Prokhorov, and A. I. Bogomazov, Astron. Zh. (2009, in press); arXiv:0704.1387.Google Scholar
  31. 31.
    G.V. Lipunova and V.M. Lipunov, Astron. Astrophys. 329, 29 (1998).ADSGoogle Scholar
  32. 32.
    G. V. Lipunov, I. E. Panchenko, and V. M. Lipunov, New Astron. 2, 555 (1997).CrossRefADSGoogle Scholar
  33. 33.
    D. Lorimer, M. Bailes, M. A. McLaughlin, et al., Science 318, 377 (2007).CrossRefGoogle Scholar
  34. 34.
    Yu. Lyubarsky, Astrophys. J. 682, 1443 (2008).CrossRefADSGoogle Scholar
  35. 35.
    R. G. Martin, C. A. Tout, and J. E. Pringle, arXiv:0905.2362 (2009).Google Scholar
  36. 36.
    E. Nakar, Phys. Rep. 442, 166 (2007).CrossRefADSGoogle Scholar
  37. 37.
    P. Podsiadlowski, N. Langer, A. J. T. Poelarends, et al., Astrophys. J. 612, 1044 (2004).CrossRefADSGoogle Scholar
  38. 38.
    S. B. Popov and K. A. Postnov, arXiv:0710.2006 (2007).Google Scholar
  39. 39.
    S. B. Popov and M. E. Prokhorov, Usp. Fiz. Nauk 177, 1179 (2007) [Phys. Usp. 50, 1123 (2007)].CrossRefGoogle Scholar
  40. 40.
    S. F. Portegies Zwart and L. R. Yungelson, Astron. Astrophys. 332, 173 (1998).ADSGoogle Scholar
  41. 41.
    K. A. Postnov and A. G. Kuranov, Mon. Not. R. Astron. Soc. 384, 1393 (2008).CrossRefADSGoogle Scholar
  42. 42.
    K. A. Postnov and L. R. Yungelson, Liv. Rev. Rel. 9, 6 (2006).Google Scholar
  43. 43.
    K. H. Prendergast, Astrophys. J. 123, 498P (1956).CrossRefMathSciNetADSGoogle Scholar
  44. 44.
    R. Romani, Nature 347, 741 (1990).CrossRefADSGoogle Scholar
  45. 45.
    H. C. Spruit, AIP Proc. 983, 391 (2008).CrossRefADSGoogle Scholar
  46. 46.
    R. Taam and E. P. J. van den Heuvel, Astrophys. J. 305, 235 (1973).CrossRefADSGoogle Scholar
  47. 47.
    R. J. Tayler, Mon. Not. R. Astron. Soc. 161, 365 (1973).ADSGoogle Scholar
  48. 48.
    A. V. Tutukov and L. R. Yungelson, Mon. Not. R. Astron. Soc. 268, 871 (1994).ADSGoogle Scholar
  49. 49.
    V. V. Usov, Nature 357, 472 (1992).CrossRefADSGoogle Scholar
  50. 50.
    G. A. E. Wright, Mon. Not. R. Astron. Soc. 162, 339 (1973).ADSGoogle Scholar
  51. 51.
    P. M. Woods, Proc. AIP 983, 227 (2008).CrossRefGoogle Scholar
  52. 52.
    Li Yuk Tung, S. L. Shapiro, Z. B. Etienne, and K. Taniguchi, Phys. Rev. D 78, 024012 (2008).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Sternberg Astronomical InstituteMoscowRussia

Personalised recommendations