Advertisement

Astronomy Letters

, Volume 35, Issue 5, pp 349–359 | Cite as

On the restricted circular conservative three-body problem with variable masses

  • L. G. Luk’yanov
Article

Abstract

We consider the restricted circular three-body problem in which the main bodies have variable masses but the sum of their masses always remains constant. For this problem, we have obtained the possible regions of motions of the small body and the previously unknown surfaces of minimum energy that bound them using the Jacobi quasi-integral. For constant masses, these surfaces transform into the well-known surfaces of zero velocity. We consider the applications of our results to close binary star systems with conservative mass transfer.

Key words

celestial mechanics restricted three-body problem with variable masses Jacobi quasi-integral surfaces of minimum energy close binary stars 

PACS numbers

95.10.Ce 97.80.Fk 98.10.+z 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Bekov, Trudy AFI AN KazSSR 47, 12 (1987a).MathSciNetGoogle Scholar
  2. 2.
    A. A. Bekov, Doctoral Dissertation (Mosc. State Univ. Astron. Inst., Moscow, 1987b).Google Scholar
  3. 3.
    A. A. Bekov, Astron. Zh. 68, 206 (1991) [Sov. Astron. 35, 103 (1991)].ADSMathSciNetGoogle Scholar
  4. 4.
    Ch. Dufour, Compt. Rend. 62, 840 (1866).Google Scholar
  5. 5.
    L. Euler, Novi Comment.Acad. Scient. Petropolit. 10, 544 (1766).Google Scholar
  6. 6.
    L. Euler, Novi Comment.Acad. Scient. Petropolit. 11, 144 (1767).Google Scholar
  7. 7.
    B. E. Gelfgat, Current Problems of Celestial Mechanics and Astrodynamics (Nauka, Moscow, 1973) [in Russian].Google Scholar
  8. 8.
    H. Gylden, Astron. Nachr. 109, 1 (1884).CrossRefADSGoogle Scholar
  9. 9.
    G.W. Hill, Am. J. Math. 1, 5 (1878).CrossRefGoogle Scholar
  10. 10.
    C. G. J. Jacobi, Compt. Rend. 3, 59 (1836).Google Scholar
  11. 11.
    J. L. Lagrange, Euvres (Gauthier-Villars, Paris, 1873), Vol. 6.Google Scholar
  12. 12.
    L. G. Luk’yanov, Astron. Zh. 65, 1308 (1988) [Sov. Astron. 32, 682 (1988)].ADSGoogle Scholar
  13. 13.
    L. G. Luk’yanov, Astron. Zh. 66, 385 (1990) [Sov. Astron. 33, 194 (1990)].Google Scholar
  14. 14.
    L. G. Luk’yanov, Pis’ma Astron. Zh. 31, 628 (2005) [Astron. Lett. 31, 563 (2005)].Google Scholar
  15. 15.
    L.G. Luk’yanov, Astron. Zh. 82, 1137 (2005) [Astron. Rep. 49, 1018 (2005)].Google Scholar
  16. 16.
    L. G. Luk’yanov and G. I. Shirmin, Pis’ma Astron. Zh. 33, 618 (2007) [Astron. Lett. 33, 550 (2007)].Google Scholar
  17. 17.
    I.W. Mestschersky, Astron. Nachr. 159, 229 (1902).CrossRefADSGoogle Scholar
  18. 18.
    A. A. Orlov, Astron. Zh. 16, 52 (1939).MathSciNetGoogle Scholar
  19. 19.
    E. N. Polyakhova, Sci. Notes Len. Gos. Univ., No. 424, 104 (1989).Google Scholar
  20. 20.
    H. Poincare, New Methods of Celestical Mechanics (Gauthier-Villars, Paris, 1892–1899; Springer, New York, 2007), Vols. 1–3.Google Scholar
  21. 21.
    E. Roche, Mem. Acad. Sci. Montpellier 1, 243 (1849).Google Scholar
  22. 22.
    V. Szebehely, Theory of Orbits (Academic Press, New York, 1967).Google Scholar
  23. 23.
    C. L. Sigel, Trans. Am.Math. Soc. 39, 225 (1936).CrossRefGoogle Scholar
  24. 24.
    K. F. Sundman, Acta Math. 36, 105 (1912).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Sternberg Astronomical InstituteMoscowRussia

Personalised recommendations