Astronomy Letters

, Volume 34, Issue 5, pp 289–297

Nonresonant effects and hydrogen transition line shape in cosmological recombination problems

Open Access
Article

Abstract

Data on the fluctuations in cosmic microwave background (CMB) radiation, whose accuracy is expected to increase in the immediate future, allow the cosmological recombination of atomic hydrogen and its interaction with the CMB radiation to be studied. Nonresonant effects play an important role in these recombination processes. We consider the quantum-mechanical foundations of the nonresonant processes and present our calculations for the differential two-photon decay rates of the 3s and 3d levels in the hydrogen atom.

Key words

cosmology cosmic microwave background radiation 

PACS numbers

95.30.Jx 98.70.Vc 

References

  1. 1.
    J. Chluba and R. A. Sunyaev, Astron. Astrophys. 446, 39 (2006).CrossRefADSGoogle Scholar
  2. 2.
    J. Chluba and R. A. Sunyaev, Astron. Astrophys. 480, 629 (2008) astro-ph/0705.3033 (2007).CrossRefADSMATHGoogle Scholar
  3. 3.
    V. K. Dubrovich and S. I. Grachev, Astron. Lett. 31, 403 (2005).CrossRefGoogle Scholar
  4. 4.
    Z. Fried and A. D. Martin, Nuovo Cimento 29, 574 (1963).CrossRefGoogle Scholar
  5. 5.
    V. G. Ivanov and S. G. Karshenboim, Zh. Éksp. Teor. Fiz. 109, 1219 (1996) [JETP 82, 656 (1996)].Google Scholar
  6. 6.
    S. G. Karshenboim, Zh. Éksp. Teor. Fiz. 106, 414 (1994) [JETP 79, 230 (1994)].Google Scholar
  7. 7.
    S. G. Karshenboim, Zh. Éksp. Teor. Fiz. 107, 1061 (1995) [JETP 80, 593 (1995)].Google Scholar
  8. 8.
    E. E. Kholupenko and A. V. Ivanchik, Pis’ma Astron. Zh. 32, 883 (2006) [Astron. Lett. 32, 795 (2006)].Google Scholar
  9. 9.
    L. N. Labzowsky, D. A. Solovyev, G. Plunien, and G. Soff, Phys. Rev. Lett. 87, 143003 (2001).CrossRefADSGoogle Scholar
  10. 10.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989; Pergamon, Oxford, 1977).MATHGoogle Scholar
  11. 11.
    F. Low, Phys. Rev. 88, 53 (1952).CrossRefADSMATHGoogle Scholar
  12. 12.
    B. Novosyadlyj, Mon. Not. R. Astron. Soc. 370, 1771 (2006).ADSGoogle Scholar
  13. 13.
    J. A. Rubiño-Martín, J. Chluba, and R. A. Sunyaev, Mon. Not. R. Astron. Soc. 371, 1939 (2006).CrossRefADSGoogle Scholar
  14. 14.
    S. Seager, D. D. Sasselov, and D. Scott, Astrophys. J. 523, L1 (1999).CrossRefADSGoogle Scholar
  15. 15.
    S. Seager, D. D. Sasselov, and D. Scott, Astrophys. J., Suppl. Ser. 128, 407 (2000).CrossRefADSGoogle Scholar
  16. 16.
    U. Seljak, N. Sugiyama, M. White, and M. Zaldarriaga, Phys. Rev. D 68, 083507 (2003).Google Scholar
  17. 17.
    Yu. L. Sokolov and V. P. Yakovlev, Zh. Éksp. Teor. Fiz. 83, 15 (1982) [Sov. Phys. JETP 56, 7 (1982)].Google Scholar
  18. 18.
    D. N. Spergel, R. Bean, O. Doré, et al., astroph/0603449 (2006).Google Scholar
  19. 19.
    A. Quatroppani, F. Bassani, and S. Carillo, Phys. Rev. 25, 3079 (1982).CrossRefADSGoogle Scholar
  20. 20.
    W. Y. Wong and D. Scott, Mon. Not. R. Astron. Soc. 375, 1441 (2007).CrossRefADSGoogle Scholar
  21. 21.
    B. A. Zon, N. L. Manakov, and L. P. Rapoport, Zh. Éksp. Teor. Fiz. 55, 924 (1969) [Sov. Phys. JETP 28, 480 (1969)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Mendeleev Institute for Metrology (VNIIM)St. PetersburgRussia
  2. 2.Max-Planck-Institut für QuantenoptikGarchingGermany
  3. 3.Pulkovo Astronomical ObservatoryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations