Astronomy Letters

, Volume 34, Issue 4, pp 271–279 | Cite as

Resonant motion of trans-Neptunian objects in high-eccentricity orbits

  • V. V. Emel’yanenko
  • E. L. KiselevaEmail author


A substantial fraction of the Edgeworth-Kuiper belt objects are presently known to move in resonance with Neptune (the principal commensurabilities are 1/2, 3/5, 2/3, and 3/4). We have found that many of the distant (with orbital semimajor axes a > 50 AU) trans-Neptunian objects (TNOs) also execute resonant motions. Our investigation is based on symplectic integrations of the equations of motion for all multiple-opposition TNOs with a > 50 AU with allowance made for the uncertainties in their initial orbits. Librations near such commensurabilities with Neptune as 4/9, 3/7, 5/12, 2/5, 3/8, 4/27, and others have been found. The largest number of distant TNOs move near the 2/5 resonance with Neptune: 12 objects librate with a probability higher than 0.75. The multiplicity of objects moving in 2/5 resonance and the longterm stability of their librations suggest that this group of resonant objects was formed at early formation stages of the Solar system. For most of the other resonant objects, the librations are temporary. We also show the importance of asymmetric resonances in the large changes in TNO perihelion distances.

Key words

Solar system trans-Neptunian objects resonances orbital evolution 

PACS numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Beauge, Celest. Mech. Dynam. Astron. 60, 225 (1994).zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    E. Chiang, A. Jordan, R. Millis, et al., Astron. J. 126, 430 (2003).CrossRefADSGoogle Scholar
  3. 3.
    C. J. Cohen and E. C. Hubbard, Astron. J. 70, 10 (1965).CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    M. J. Duncan and H. F. Levison, Science 276, 1670 (1997).CrossRefADSGoogle Scholar
  5. 5.
    V. V. Emel’yanenko, Celest. Mech. Dynam. Astron. 84, 331 (2002).zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    V. V. Emel’yanenko, D. J. Asher, and M. E. Bailey, Mon. Not. R. Astron. Soc. 338, 443 (2003).CrossRefADSGoogle Scholar
  7. 7.
    V. V. Emel’yanenko, D. J. Asher, and M. E. Bailey, Mon. Not. R. Astron. Soc. 350, 161 (2004).CrossRefADSGoogle Scholar
  8. 8.
    J. A. Fernandez, Mon. Not. R. Astron. Soc. 192, 481 (1980).ADSGoogle Scholar
  9. 9.
    S. Ferraz-Mello and M. Sato, Astron. Astrophys. 225, 541 (1989).ADSGoogle Scholar
  10. 10.
    T. Gallardo, Icarus 181, 205 (2006).CrossRefADSGoogle Scholar
  11. 11.
    H. F. Levison and M. J. Duncan, Icarus 127, 13 (1997).CrossRefADSGoogle Scholar
  12. 12.
    R. Malhotra, Astron. J. 110, 420 (1995).CrossRefADSGoogle Scholar
  13. 13.
    P. J. Message, Astron. J. 63, 443 (1958).CrossRefADSGoogle Scholar
  14. 14.
    A. Morbidelli, Icarus 127, 1 (1997).CrossRefADSGoogle Scholar
  15. 15.
    D. Nesvorny and F. Roig, Icarus 148, 282 (2000).CrossRefADSGoogle Scholar
  16. 16.
    D. Nesvorny and F. Roig, Icarus 150, 104 (2001).CrossRefADSGoogle Scholar
  17. 17.
    C. A. Trujillo, D. C. Jewitt, and J. X. Luu, Astron. J. 122, 457 (2001).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.South-Ural State UniversityChelyabinskRussia

Personalised recommendations