Astronomy Letters

, Volume 33, Issue 11, pp 740–754 | Cite as

Dynamical instability of laminar axisymmetric flows of ideal fluid with stratification

Article

Abstract

The instability of nonhomentropic axisymmetric flows of ideal fluid with respect to two-dimensional infinitesimal perturbations with the nonconservation of angular momentum is investigated by numerically integrating the differential equations of hydrodynamics. This problem is important in studying the dynamics of astrophysical flows as shear fluid flows around a gravitating center. A complex influence of a nonzero entropy gradient on the instability of sonic and surface gravity modes has been found. In particular, both an increase and a decrease in entropy against the effective gravity g eff causes the growth of surface gravity modes that are stable at the same parameters for a homentropic flow. At the same time, the growth rate of the sonic instability branches either monotonically increases with increasing rate of decrease in entropy against g eff or becomes zero at both negative and positive entropy gradients in the unperturbed flow. Calculations also show that growing internal gravity modes appear in the problem with free boundaries under consideration only if the flow is no longer stable with respect to axisymmetric perturbations. In addition, we show that it is improper to specify the entropy distribution in the main flow by a polytropic law with a polytropic index different from the adiabatic value, since the perturbation field does not satisfy the boundary condition at a free boundary in this case.

Key words

hydrodynamics instability nonhomentropic flows 

PACS numbers

97.10.Gz 47.15.Fe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. M. Blaes and W. Glatzel, Mon. Not. R. Astron. Soc. 220, 253 (1986).ADSGoogle Scholar
  2. 2.
    L. M. Brekhovskikh and V. V. Goncharov, Introduction to Continuum Mechanics (Nauka, Moscow, 1982) [in Russian].Google Scholar
  3. 3.
    J. Frank and J. A. Robertson, Mon. Not. R. Astron. Soc. 232, 1 (1988).MATHADSGoogle Scholar
  4. 4.
    M. Y. Fujimoto, Astron. Astrophys. 176, 53 (1987).MATHADSMathSciNetGoogle Scholar
  5. 5.
    P. Ghosh and M. A. Abramowicz, Astrophys. J. 366, 221 (1991).CrossRefADSGoogle Scholar
  6. 6.
    W. Glatzel, Mon. Not. R. Astron. Soc. 225, 227 (1987a).MATHADSMathSciNetGoogle Scholar
  7. 7.
    W. Glatzel, Mon. Not. R. Astron. Soc. 228, 77 (1987b).MATHADSGoogle Scholar
  8. 8.
    W. Glatzel, Mon. Not. R. Astron. Soc. 242, 338 (1990).ADSMathSciNetGoogle Scholar
  9. 9.
    W. Glatzel, Rev. Mod. Astron. 4, 104 (1991).ADSGoogle Scholar
  10. 10.
    P. Goldreich, J. Goodman, and R. Narayan, Mon. Not. R. Astron. Soc. 221, 339 (1986).MATHADSGoogle Scholar
  11. 11.
    T. Hanawa, Astron. Astrophys. 179, 383 (1987).MATHADSGoogle Scholar
  12. 12.
    L. N. Howard, J. Fluid Mech. 10, 496 (1961).CrossRefMathSciNetGoogle Scholar
  13. 13.
    M. Jaroszynski, Acta Astron. 38, 289 (1988).ADSGoogle Scholar
  14. 14.
    H. H. Klahr and P. Bodenheimer, Astrophys. J. 582, 869 (2003).CrossRefADSGoogle Scholar
  15. 15.
    Y. Kojima, Mon. Not. R. Astron. Soc. 236, 589 (1989).ADSGoogle Scholar
  16. 16.
    Y. Kojima, S. M. Miyama, and H. Kubotani, Mon. Not. R. Astron. Soc. 238, 753 (1989).ADSGoogle Scholar
  17. 17.
    R. V. E. Lovelace, H. Li, S. A. Colgate, and A. F. Nelson, Astrophys. J. 513, 805 (1999).CrossRefADSGoogle Scholar
  18. 18.
    H. Li, J. M. Finn, R. V. E. Lovelace, and S. A. Colgate, Astrophys. J. 533, 1023 (2000).CrossRefADSGoogle Scholar
  19. 19.
    C. C. Lin, Q. Appl. Math. 3, 117 (1945).MATHGoogle Scholar
  20. 20.
    J. C. B. Papaloizou and D. N. C. Lin, Ann. Rev. Astron. Astrophys. 33, 505 (1995).ADSGoogle Scholar
  21. 21.
    J. C. B. Papaloizou and J. E. Pringle, Mon. Not. R. Astron. Soc. 208, 721 (1984).MATHADSGoogle Scholar
  22. 22.
    J. C. B. Papaloizou and J. E. Pringle, Mon. Not. R. Astron. Soc. 213, 799 (1985).MATHADSGoogle Scholar
  23. 23.
    J. C. B. Papaloizou and J. E. Pringle, Mon. Not. R. Astron. Soc. 225, 267 (1987).MATHADSGoogle Scholar
  24. 24.
    M. Sekiya and S. Miyama, Mon. Not. R. Astron. Soc. 234, 107 (1988).MATHADSGoogle Scholar
  25. 25.
    Yu. A. Stepanyants and A. L. Fabrikant, Propagation of Waves in Shear Flows (Nauka, Moscow, 1996) [in Russian].Google Scholar
  26. 26.
    J.-L. Tassoul, Theory of Rotating Stars (Princeton Univ. Press, Princeton, 1979; Mir, Moscow, 1982).Google Scholar
  27. 27.
    Yu. I. Troitskaya and A. L. Fabrikant, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 32, 1221 (1989).Google Scholar
  28. 28.
    V. V. Zhuravlev and N. I. Shakura, Pis’ma Astron. Zh. 33, 604 (2007a).Google Scholar
  29. 29.
    V. V. Zhuravlev and N. I. Shakura, Pis’ma Astron. Zh. 33 (2007b) (in press).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  1. 1.Physics FacultyMoscow State UniversityVorob’evy gory, MoscowRussia
  2. 2.Sternberg Astronomical InstituteMoscowRussia
  3. 3.Max-Planck-Institut für AstrophysikGarchingGermany

Personalised recommendations