Astronomy Letters

, Volume 33, Issue 10, pp 673–691 | Cite as

Dynamical instability of laminar axisymmetric flows of ideal compressible fluid

Article

Abstract

The instability of axisymmetric flows of inviscid compressible fluid with respect to two-dimensional infinitesimal perturbations with the nonconservation of angular momentum is investigated by numerically integrating the differential equations of hydrodynamics. The compressibility is taken into account for a homentropic flow with an adiabatic index varying over a wide range. The problem has been solved for two angular velocity profiles of an initial axisymmetric flow. In the first case, a power-law rotation profile with a finite enthalpy gradient at the flow edges has been specified. For this angular velocity profile, we show that the instability of sonic and surface gravity modes in a nearly Keplerian flow, when a radially variable vorticity exists in the main flow, can be explained by the combined action of the Landau mechanism and mode coupling. We also show that including a radially variable vorticity makes the limiting exponent in the rotation law at which the unstable surface gravity modes vanish dependent on the fluid compressibility. In the second case, a Keplerian rotation law with a quasi-sinusoidal deviation has been specified in such a way that the enthalpy gradient vanished at the flow edges. We have found than the sonic modes are then stabilized and the flow is unstable only with respect to the perturbations that also exist in an incompressible fluid.

Key words

hydrodynamics instability mode coupling 

PACS numbers

97.10.Gz 47.15.Fe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Andronov and A. L. Fabrikant, Nonlinear Waves, Ed. by A. V. Gaponov (Nauka, Moscow, 1979), p. 68 [in Russian].Google Scholar
  2. 2.
    G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge Univ. Press, Cambridge, 1967; Mir, Moscow, 1973).MATHGoogle Scholar
  3. 3.
    O. M. Blaes and W. Glatzel, Mon. Not. R. Astron. Soc. 220, 253 (1986).ADSGoogle Scholar
  4. 4.
    R. A. Cairns, J. Fluid Mech. 92, 1 (1979).MATHCrossRefADSGoogle Scholar
  5. 5.
    C. M. Churilov and I. G. Shukhman, Astron. Tsirk., No. 1157, 1 (1981).Google Scholar
  6. 6.
    W. Glatzel, Mon. Not. R. Astron. Soc. 225, 227 (1987a).MATHADSMathSciNetGoogle Scholar
  7. 7.
    W. Glatzel, Mon. Not. R. Astron. Soc. 228, 77 (1987b).MATHADSGoogle Scholar
  8. 8.
    W. Glatzel, Mon. Not. R. Astron. Soc. 231, 795 (1988).ADSGoogle Scholar
  9. 9.
    P. Goldreich and R. Narayan, Mon. Not. R. Astron. Soc. 213, 7 (1985).ADSGoogle Scholar
  10. 10.
    P. Goldreich, J. Goodman, and R. Narayan, Mon. Not. R. Astron. Soc. 221, 339 (1986).MATHADSGoogle Scholar
  11. 11.
    N. N. Gorkavyi and A. M. Fridman, Physics of Planetary Rings (Nauka, Moscow, 1994) [in Russian].Google Scholar
  12. 12.
    M. Jaroszynski, Acta Astron. 38, 289 (1988).ADSGoogle Scholar
  13. 13.
    S. Kato, Publ. Astron. Soc. Jpn. 39, 645 (1987).ADSGoogle Scholar
  14. 14.
    R. Kleiber and W. Glatzel, Mon. Not. R. Astron. Soc. 303, 107 (1999).CrossRefADSGoogle Scholar
  15. 15.
    Y. Kojima, Mon. Not. R. Astron. Soc. 236, 589 (1989).ADSGoogle Scholar
  16. 16.
    C. C. Lin, Q. Appl. Math. 3, 117 (1945).MATHGoogle Scholar
  17. 17.
    R. Narayan, P. Goldreich, and J. Goodman, Mon. Not. R. Astron. Soc. 228, 1 (1987).MATHADSGoogle Scholar
  18. 18.
    J. C. B. Papaloizou and J. E. Pringle, Mon. Not. R. Astron. Soc. 208, 721 (1984).MATHADSGoogle Scholar
  19. 19.
    J. C. B. Papaloizou and J. E. Pringle, Mon. Not. R. Astron. Soc. 213, 799 (1985).MATHADSGoogle Scholar
  20. 20.
    J. C. B. Papaloizou and J. E. Pringle, Mon. Not. R. Astron. Soc. 225, 267 (1987).MATHADSGoogle Scholar
  21. 21.
    Lord Rayleigh, Proc. London Math. Soc. 11, 57 (1880).CrossRefGoogle Scholar
  22. 22.
    Lord Rayleigh, Proc. R. Soc. London, Ser. A 93, 143 (1916).Google Scholar
  23. 23.
    G. I. Savonije and M. H. M. Heemskerk, Astron. Astrophys. 240, 191 (1990).MATHADSGoogle Scholar
  24. 24.
    M. Sekiya and S. Miyama, Mon. Not. R. Astron. Soc. 234, 107 (1988).MATHADSGoogle Scholar
  25. 25.
    Yu. A. Stepanyants and A. L. Fabrikant, Propagation of Waves in Shear Flows (Nauka, Moscow, 1996) [in Russian].Google Scholar
  26. 26.
    A. V. Timofeev, Usp. Fiz. Nauk 102, 185 (1970) [Sov. Phys. Usp. 13, 632 (1970)].Google Scholar
  27. 27.
    A. V. Timofeev, Fiz. Plazmy 5, 705 (1979) [Sov. J. Plasma Phys. 5, 398 (1979)].Google Scholar
  28. 28.
    V. V. Zhuravlev and N. I. Shakura, Astron. Lett. 303, 604 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  1. 1.Physics FacultyMoscow State UniversityVorob’evy gory, MoscowRussia
  2. 2.Sternberg Astronomical InstituteMoscowRussia
  3. 3.Max-Planck-Institut für AstrophysikGarchingGermany

Personalised recommendations