Astronomy Letters

, Volume 33, Issue 8, pp 536–549 | Cite as

Dynamical instability of laminar axisymmetric flows of ideal incompressible fluid

  • V. V. Zhuravlev
  • N. I. Shakura
Article

Abstract

The instability of axisymmetric flows of ideal incompressible fluid with respect to infinitesimal perturbations with the nonconservation of angular momentum is investigated by numerically integrating the differential equations of hydrodynamics. The problem has been solved for two types of rotation profiles of an unperturbed flow: with zero and nonzero pressure gradients at the flow boundaries. Both rigid and free boundary conditions have been considered. The stability of axisymmetric flows with free boundaries is of great importance in disk accretion problems. Our calculations have revealed a crucial role of the flow pattern near the boundaries in the instability of the entire main flow. When the pressure gradient at the boundaries is zero, there is such a limiting scale of perturbations in azimuthal coordinate that longer-wavelength perturbations grow, while growing shorter-wavelength perturbations do not exit. In addition, for a fixed radial flow extent, there exists a nonzero minimum amplitude of the deviation of the angular velocity from the Keplerian one at which the instability vanishes. For a nonzero pressure gradient at the boundaries, the flow is unstable with respect to perturbations of any scale and at any small deviation of the angular velocity from the Keplerian one.

Key words

hydrodynamics instability disk accretion 

PACS numbers

97.10.Gz 47.15.Fe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Abramowicz, O. M. Blaes, and P. Ghosh, Astrophys. J. 323, 629 (1987).CrossRefADSGoogle Scholar
  2. 2.
    O. M. Blaes and W. Glatzel, Mon. Not. R. Astron. Soc. 220, 253 (1986).ADSGoogle Scholar
  3. 3.
    L. O’C. Drury, Mon. Not. R. Astron. Soc. 217, 821 (1985).MATHADSGoogle Scholar
  4. 4.
    W. Glatzel, Mon. Not. R. Astron. Soc. 225, 227 (1987a).MATHADSGoogle Scholar
  5. 5.
    W. Glatzel, Mon. Not. R. Astron. Soc. 228, 77 (1987b).MATHADSGoogle Scholar
  6. 6.
    W. Glatzel, Mon. Not. R. Astron. Soc. 231, 795 (1988).ADSGoogle Scholar
  7. 7.
    P. Goldreich and R. Narayan, Mon. Not. R. Astron. Soc. 213, 7 (1985).ADSGoogle Scholar
  8. 8.
    P. Goldreich, J. Goodman, and R. Narayan, Mon. Not. R. Astron. Soc. 221, 339 (1986).MATHADSGoogle Scholar
  9. 9.
    J. F. Hawley, Mon. Not. R. Astron. Soc. 225, 677 (1987).ADSGoogle Scholar
  10. 10.
    M. Jaroszynski, Acta Astron. 38, 289 (1988).ADSGoogle Scholar
  11. 11.
    H. Ji, M. Burin, E. Schartman, and J. Goodman, Nature 444, 343 (2006).CrossRefADSGoogle Scholar
  12. 12.
    S. Kato, Publ. Astron. Soc. Jpn. 39, 645 (1987).ADSGoogle Scholar
  13. 13.
    N. E. Kochin, Vector Calculus and the Elements of Tensor Calculus (Nauka, Moscow, 1965) [in Russian].Google Scholar
  14. 14.
    Y. Kojima, Mon. Not. R. Astron. Soc. 236, 589 (1989).ADSGoogle Scholar
  15. 15.
    G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1968; Nauka, Moscow, 1984).Google Scholar
  16. 16.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Nauka, Moscow, 1986; Pergamon Press, Oxford, 1986).Google Scholar
  17. 17.
    C. C. Lin, Q. Appl. Math. 3, 117 (1945).MATHGoogle Scholar
  18. 18.
    C.-C. Lin, The Theory of Hydrodynamic Stability (Inostrannaya Literatura, Moscow, 1958; Cambridge University Press, Cambridge, 1966).Google Scholar
  19. 19.
    D. Lynden-Bell and J. P. Ostriker, Mon. Not. R. Astron. Soc. 136, 293 (1967).MATHADSGoogle Scholar
  20. 20.
    R. Narayan, P. Goldreigh, and J. Goodman, Mon. Not. R. Astron. Soc. 228, 1 (1987).MATHADSGoogle Scholar
  21. 21.
    J. C. B. Papaloizou and J. E. Pringle, Mon. Not. R. Astron. Soc. 208, 721 (1984).MATHADSGoogle Scholar
  22. 22.
    J. C. B. Papaloizou and J. E. Pringle, Mon. Not. R. Astron. Soc. 213, 799 (1985).MATHADSGoogle Scholar
  23. 23.
    J. C. B. Papaloizou and J. E. Pringle, Mon. Not. R. Astron. Soc. 225, 267 (1987).MATHADSGoogle Scholar
  24. 24.
    V. V. Petkevich, Fundamentals of Continuum Mechanics (Éditorial, URSS, 2001) [in Russian].Google Scholar
  25. 25.
    L. Rayleigh, Proc. London Math. Soc. 11, 57 (1880).CrossRefGoogle Scholar
  26. 26.
    L. Rayleigh, Proc. R. Soc. London, Ser. A 93, 143 (1916).Google Scholar
  27. 27.
    M. Sekyia and S. Miyama, Mon. Not. R. Astron. Soc. 234, 107 (1988).ADSGoogle Scholar
  28. 28.
    J.-L. Tassoul, Theory of Rotating Stars (Mir, Moscow, 1978; Princeton Univ. Press, Princeton, 1979).Google Scholar
  29. 29.
    G. I. Taylor, Philos. Trans. R. Soc. London, Ser. A 223, 289 (1923).CrossRefADSGoogle Scholar
  30. 30.
    W. H. Zurek and W. Benz, Astrophys. J. 308, 123 (1986).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • V. V. Zhuravlev
    • 1
  • N. I. Shakura
    • 2
    • 3
  1. 1.Physics FacultyMoscow State UniversityVorob’evy gory, MoscowRussia
  2. 2.Sternberg Astronomical InstituteMoscowRussia
  3. 3.Max-Planck-Institut für AstrophysikGarchingGermany

Personalised recommendations