Astronomy Letters

, Volume 32, Issue 6, pp 393–405 | Cite as

Neutron stars in globular clusters: Formation and observational manifestations

  • A. G. Kuranov
  • K. A. Postnov


Population synthesis is used to model the number of neutron stars in globular clusters that are observed as low-mass X-ray sources and millisecond radio pulsars. The dynamical interactions between binary and single stars in a cluster are assumed to take place only with a continuously replenished “background” of single stars whose properties keep track of the variations in parameters of the cluster as a whole and the evolution of single stars. We use the hypothesis that the neutron stars forming in binary systems from components with initial masses of ∼8–12 M during the collapse of degenerate O-Ne-Mg cores through electron captures do not acquire a high space velocity. The remaining neutron stars (from single stars with masses >8 M or from binary components with masses >12 M ) are assumed to be born with high space velocities. According to this hypothesis, a sizeable fraction of the forming neutron stars remain in globular clusters (about 1000 stars in a cluster with a mass of 5 × 105 M ). The number of millisecond radio pulsars forming in such a cluster in the case of accretion-driven spinup in binary systems is found to be ∼10, in agreement with observations. Our modeling also reproduces the observed shape of the X-ray luminosity function for accreting neutron stars in binary systems with normal and degenerate components and the distribution of spin periods for millisecond pulsars.

PACS numbers

98.20.Gm 97.60.Jd 97.60.Gb 97.80.Jp 98.70.Qy 

Key words

binary X-ray sources neutron stars millisecond pulsars globular clusters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. D. Bailyn and J. E. Grindlay, Astrophys. J. 353, 159 (1990).CrossRefADSGoogle Scholar
  2. 2.
    D. Bhattacharya and E. P. J. van den Heuvel, Phys. Rep. 203, 1 (1991).CrossRefADSGoogle Scholar
  3. 3.
    G. S. Bisnovatyi-Kogan, Usp. Fiz. Nauk 176, 59 (2006).Google Scholar
  4. 4.
    G. S. Bisnovatyi-Kogan and B. V. Komberg, Astron. Zh. 51, 373 (1974) [Sov. Astron. 18, 217 (1974)].ADSGoogle Scholar
  5. 5.
    G. S. Bisnovatyi-Kogan and A. V. Tutukov, Astron. Zh. 81, 797 (2004) [Astron. Rep. 48, 724 (2004)].Google Scholar
  6. 6.
    S. Bogdanov, J. E. Grindlay, and M. van den Berg, Astrophys. J. 630, 1029 (2005).CrossRefADSGoogle Scholar
  7. 7.
    F. Camillo and F. A. Rasio, Binary Radio Pulsars, Ed. by F. Rasio and I. H. Stairs, Astron. Soc. Pac. Conf. Ser., p. 328 (2005); astro-ph/0501226.Google Scholar
  8. 8.
    E. M. Caskett, R. Wijnands, C. O. Heinke, et al., Mon. Not. R. Astron. Soc. (in press); astro-ph/0512168.Google Scholar
  9. 9.
    J. D. M. Dewi, Ph. Podsiadlowski, and O. R. Pols, Mon. Not. R. Astron. Soc. 363, 71 (2005).CrossRefADSGoogle Scholar
  10. 10.
    N. V. Dunina-Barkovskaya, V. S. Imshennik, and S. I. Blinnikov, Pis’ma Astron. Zh. 27, 412 (2001) [Astron. Lett. 27, 353 (2001)].Google Scholar
  11. 11.
    G. Fabbiano, Ann. Rev. Astron. Astrophys. (in press); astro-ph/0511481.Google Scholar
  12. 12.
    J. M. Fregeau, M. A. Gurkan, and F. A. Rasio, astro-ph/0512032 (2005).Google Scholar
  13. 13.
    M. R. Gilfanov, Mon. Not. R. Astron. Soc. 349, 146 (2004).CrossRefADSGoogle Scholar
  14. 14.
    J. E. Grindlay, Binary Radio Pulsars, Ed. by F. Rasio and I. H. Stairs, Astron. Soc. Pac. Conf. Ser., p. 328 (2005); astro-ph/0412670.Google Scholar
  15. 15.
    J. E. Grindlay and C. D. Bailyn, Nature 336, 48 (1988).CrossRefADSGoogle Scholar
  16. 16.
    J. E. Grindlay, S. Portegies Zwart, and S. McMillan, Nature (in press); astro-ph/0512654.Google Scholar
  17. 17.
    C. O. Heinke, J. E. Grindlay, P. D. Edmonds, et al., Astrophys. J. 625, 796 (2005).CrossRefADSGoogle Scholar
  18. 18.
    D. J. Helfand, M. A. Ruderman, and J. Shaham, Nature 304, 423 (1983).CrossRefADSGoogle Scholar
  19. 19.
    G. Hobbs, D. R. Lorimer, A. G. Lyne, and M. Kramer, Mon. Not. R. Astron. Soc. 360, 974 (2005).CrossRefADSGoogle Scholar
  20. 20.
    I. Iben, Jr. and A. V. Tutukov, Astrophys. J. 456, 738 (1996).CrossRefADSGoogle Scholar
  21. 21.
    N. Ivanova, K. Belczynski, J. M. Fregeau, and F. Rasio, Mon. Not. R. Astron. Soc. 358, 572 (2005).CrossRefADSGoogle Scholar
  22. 22.
    S. S. Kim, H. M. Lee, and J. Goodman, Astrophys. J. 495, 786 (1998).CrossRefADSGoogle Scholar
  23. 23.
    F. S. Kitaura, H.-Th. Janka, and W. Hillebrandt, Astron. Astrophys. (in press); astro-ph/0512065.Google Scholar
  24. 24.
    A. G. Kuranov and K. A. Postnov, Pis’ma Astron. Zh. 30, 164 (2004) [Astron. Lett. 30, 140 (2004)].Google Scholar
  25. 25.
    D. Lai, Physics of Neutron Star Interiors, Ed. by D. Blaschke, N. K. Glendenning, and A. Sedrakian (Springer, 2001), Lect. Notes Phys. 578, 424 (2001).Google Scholar
  26. 26.
    V. M. Lipunov and K. A. Postnov, Astrophys. Space Sci. 106, 103 (1984).CrossRefADSGoogle Scholar
  27. 27.
    V. M. Lipunov, K. A. Postnov, and M. E. Prokhorov, Astrophys. Space Sci. Rev. 9, 1 (1996).Google Scholar
  28. 28.
    D. Lorimer, Liv. Rev. Rel. 8, 7 (2005); astro-ph/0511258.Google Scholar
  29. 29.
    R. W. Michie, Mon. Not. R. Astron. Soc. 125, 127 (1963).MathSciNetADSGoogle Scholar
  30. 30.
    S. Miyaji, K. Nomoto, K. Yokoi, and D. Sugimoto, Publ. Astron. Soc. Jpn. 32, 303 (1980).ADSGoogle Scholar
  31. 31.
    H. Mouri and Y. Taniguchi, Astrophys. J. 580, 844 (2002).CrossRefADSGoogle Scholar
  32. 32.
    E. Pfahl, S. Rappaport, and Ph. Podsiadlowski, Astrophys. J. 573, 283 (2002).CrossRefADSGoogle Scholar
  33. 33.
    Ph. Podsiadlowski, J. D. M. Dewi, P. Lesaffre, et al., Mon. Not. R. Astron. Soc. 361, 1243 (2005).CrossRefADSGoogle Scholar
  34. 34.
    Ph. Podsiadlowski, N. Langer, A. J. T. Poelarends, et al., Astrophys. J. 612, 1044 (2004).CrossRefADSGoogle Scholar
  35. 35.
    O. Pols, K.-P. Schroeder, J. R. Hurley, et al., Mon. Not. R. Astron. Soc. 298, 525 (1998).CrossRefADSGoogle Scholar
  36. 36.
    D. Pooley, W. H. G. Lewin, S. F. Anderson, et al., Astrophys. J. 591, 131 (2003).CrossRefADSGoogle Scholar
  37. 37.
    K. A. Postnov and A. G. Kuranov, Pis’ma Astron. Zh. 31, 10 (2005) [Astron. Lett. 31, 7 (2005)].Google Scholar
  38. 38.
    C. Ritossa, E. Carcia-Berro, and I. Iben, Jr., Astrophys. J. 515, 381 (1999).CrossRefADSGoogle Scholar
  39. 39.
    L. Spitzer, Astrophys. J. 158, 139 (1969).CrossRefADSGoogle Scholar
  40. 40.
    A. V. Tutukov, N. N. Chugai, and L. R. Yungelson, Pis’ma Astron. Zh. 10, 586 (1984) [Sov. Astron. Lett. 10, 244 (1984)].ADSGoogle Scholar
  41. 41.
    E. P. J. van den Heuvel, J. Astrophys. Astron. 5, 209 (1984).ADSGoogle Scholar
  42. 42.
    E. P. J. van den Heuvel, in Proceedings of the 5th INTEGRAL Workshop, Ed. by V. Schenfelder, G. Lichti, and C. Winkler, ESA SP-552 (2004), p. 185.Google Scholar
  43. 43.
    E. P. J. van den Heuvel, J. van Paradijs, and R. E. Taam, Nature 322, 153 (1986).CrossRefADSGoogle Scholar
  44. 44.
    F. Verbunt and C. Bassa, Chin. J. Astron. Astrophys. 3, 225 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. G. Kuranov
    • 1
  • K. A. Postnov
    • 1
  1. 1.Sternberg Astronomical InstituteMoscowRussia

Personalised recommendations