Astronomy Letters

, Volume 32, Issue 5, pp 344–352 | Cite as

Solar and geomagnetic activity on a long time scale: Reconstructions and possibilities for predictions

  • Yu. A. Nagovitsyn
Article

Abstract

Using two mathematical methods based on the wavelet transform and nonlinear dynamics, we reconstructed the behavior of the aa-index of geomagnetic activity in the past. Two versions of the series are provided: for the last 400 years and on an almost 1000-year time scale. We consider typical values of the aa-index at grandiose extrema of solar activity. The same high level of geomagnetic activity as that observed in the last 50 years is shown to have also taken place in the early 12th and late 14th centuries. We suggest an extended time series of A-indices of the large-scale solar magnetic field. On the 400-year time scale, we confirmed that the large-scale magnetic field develops earlier than the magnetic fields of active regions. Ohl’s prediction method was verified on the same time scale.

PACS numbers

96.60.qd 91.25.Le 

Keywords

Sun solar activity solar—terrestrial relationships 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. M. Astaf’eva, Usp. Fiz. Nauk 166, 1145 (1996) [Phys. Usp. 39, 1085 (1996)].CrossRefGoogle Scholar
  2. 2.
    E. W. Cliver and A. G. Ling, J. Geophys. Res. 107, SSH 11-1, 1303 (2002).CrossRefGoogle Scholar
  3. 3.
    L. Krivsky, Sol. Phys. 93, 189 (1984).ADSGoogle Scholar
  4. 4.
    M. Lockwood, R. Stamper, and M. N. Wild, Nature 399, 437 (1999).CrossRefADSGoogle Scholar
  5. 5.
    V. I. Makarov and A. G. Tlatov, Izv. Gl. Astrofiz. Obs. Ross. Akad. Nauk 217, 105 (2004).Google Scholar
  6. 6.
    V. I. Makarov, A. G. Tlatov, D. K. Callebaut, et al., Sol. Phys. 198, 409 (2001).CrossRefADSGoogle Scholar
  7. 7.
    V. I. Makarov, A. G. Tlatov, D. K. Callebaut, and V. N. Obridko, Sol. Phys. 206, 383 (2002).CrossRefADSGoogle Scholar
  8. 8.
    G. G. Malinetskii and A. B. Potapov, Current Problems of Nonlinear Dynamics (Editorial URSS, Moscow, 2000) [in Russian].Google Scholar
  9. 9.
    P. N. Mayaud, J. Geophys. Res. 77, 6870 (1972).CrossRefADSGoogle Scholar
  10. 10.
    Yu. A. Nagovitsyn, Soln. Dannye “Papers and Reports 1995–1996,” 38 (1997a).Google Scholar
  11. 11.
    Yu. A. Nagovitsyn, Pis’ma Astron. Zh. 23, 851 (1997b) [Astron. Lett. 23, 742 (1997b)].ADSGoogle Scholar
  12. 12.
    Yu. A. Nagovitsyn, Pis’ma Astron. Zh. 31, 622 (2005) [Astron. Lett. 31, 557 (2005)].Google Scholar
  13. 13.
    Yu. A. Nagovitsyn, V. G. Ivanov, E. V. Miletsky, and D. M. Volobuev, Sol. Phys. 224, 103 (2004).CrossRefADSGoogle Scholar
  14. 14.
    H. Nevanlinna and E. Kataja, Geophys. Res. Lett. 20, 2703 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    A. I. Ohl, Soln. Dannye 12, 84 (1966).Google Scholar
  16. 16.
    A. I. Ohl, Soln. Dannye 9, 73 (1976).ADSGoogle Scholar
  17. 17.
    T. I. Pulkkinen, H. Nevanlinna, P. J. Pulkinnen, and M. Lockwood, Space Sci. Rev. 95(1/2), 625 (2001).CrossRefADSGoogle Scholar
  18. 18.
    I. G. Richardson, H. V. Cane, and E. W. Cliver, J. Geophys. Res. 107, SSH 8-1, 2569 (2002).Google Scholar
  19. 19.
    L. Svalgaard, E. W. Cliver, and P. LeSager, in Solar Variability As an Input to the Earth’s Environment: ISCS Symposium, Ed. by A. Wilson (ESA Publ. Divis., Noordwijk, 2003), ESA SP-535, p. 15.Google Scholar
  20. 20.
    F. Takens, Lect. Notes Math. 898, 336 (1981).MathSciNetGoogle Scholar
  21. 21.
    Yu. I. Vitinskii, M. Kopetskii, and G. V. Kuklin, Statistics of Sunspot Activity (Nauka, Moscow, 1986) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • Yu. A. Nagovitsyn
    • 1
  1. 1.Pulkovo Astronomical ObservatoryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations