Advertisement

Astronomy Reports

, Volume 63, Issue 11, pp 932–943 | Cite as

Features of the Residual Velocity Ellipsoid of Hot Subdwarfs from the Gaia DR2 Catalog

  • V. V. BobylevEmail author
  • A. T. Bajkova
Article

Abstract

The evolution of the parameters of the residual velocity ellipsoid of hot subdwarfs (HSDs) with their position relative to the Galactic plane is traced, using the HSDs selected by Geier et al. from the Gaia DR2 catalog. Parameters of the Galactic rotation are determined for two ∣z∣ zones. These are used to estimate the gradient of the circular rotation velocity, V0, versus ∣z∣, found to be ΔV0/Δ∣z∣ = −71 ± 7 kms−1kpc−1. The size of the residual velocity ellipsoid is (σ1, σ2, σ3) = (36.1, 27.6, 22.8) ± (0.4, 0.8, 0.6) km/s for HSDs at ∣z∣ < 0.5 kpc and (σ1, σ2, σ3) = (56.9, 55.8, 39.7) ± (0.9, 1.1, 0.8) km/s for HS Ds at ∣z∣≥ 0.5 kpc. When forming the HSD residual velocities, the Galactic rotation was taken into account using individual approaches for each z zone. Parameters of the residual velocity ellipsoids for HSDs located in four plane-parallel layers are also determined. The size of the ellipsoid increases with z, and the inclination of the first axis relative to the Galactic plane also increases. This inclination is close to zero in zones close to the Galactic plane, z ∼ ±0.2 kpc, and rises to ∓12° ± 4° for z ∼ ±0.9 kpc.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank the referee for useful remarks that helped us to improve the paper.

References

  1. 1.
    M. L. Humason and F. Zwicky, Astrophys. J. 105, 85 (1947).ADSCrossRefGoogle Scholar
  2. 2.
    J. L. Greenstein and A. I. Sargent, Astrophys. J. Suppl. 28, 157 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    A. G. A. Brown, A. Vallenari, T. Prusti, J. de Bruijne, et al., Astron. Astrophys. 595, A2 (2016).CrossRefGoogle Scholar
  4. 4.
    A. G. A. Brown, A. Vallenari, T. Prusti, J. de Bruijne, et al., Astron. Astrophys. 616, A1 (2018).CrossRefGoogle Scholar
  5. 5.
    L. Lindegren, J. Hernandez, A. Bombrun, S. Klioner, et al., Astron. Astrophys. 616, A2 (2018).CrossRefGoogle Scholar
  6. 6.
    G. Iorio and V. Belokurov, Mon. Not. R. Astron. Soc. 482, 3868 (2019).ADSCrossRefGoogle Scholar
  7. 7.
    N. Rowell and M. Kilic, Mon. Not. R. Astron. Soc. 484, 3544 (2019).ADSCrossRefGoogle Scholar
  8. 8.
    T. Antoja, A. Helmi, M. Romero-Gómez, D. Katz, et al., Nature 561, 360 (2018).ADSCrossRefGoogle Scholar
  9. 9.
    M. Bennett and J. Bovy, Mon. Not. R. Astron. Soc. 482, 1417 (2019).ADSCrossRefGoogle Scholar
  10. 10.
    E. Vasiliev, Mon. Not. R. Astron. Soc. 484, 2832 (2019).ADSCrossRefGoogle Scholar
  11. 11.
    H. Baumgardt, M. Hilker, A. Sollima, and A. Bellini, Mon. Not. R. Astron. Soc. 482, 5138 (2019).ADSCrossRefGoogle Scholar
  12. 12.
    G. Eadie and M. Juric, Astrophys. J. 875, 159 (2019).ADSCrossRefGoogle Scholar
  13. 13.
    D. Kawata, J. Bovy, N. Matsunaga, and J. Baba, Mon. Not. R. Astron. Soc. 482, 40 (2019).ADSCrossRefGoogle Scholar
  14. 14.
    V. V. Bobylev and A. T. Bajkova, Astron. Lett. 44, 675 (2018).ADSGoogle Scholar
  15. 15.
    V. V. Bobylev and A. T. Bajkova, Astron. Lett. 45, 109 (2019).ADSCrossRefGoogle Scholar
  16. 16.
    J. A. S. Hunt, J. Hong, J. Bovy, D. Kawata, and R. J. J. Grand, Mon. Not. R. Astron. Soc. 481, 3794 (2018).ADSCrossRefGoogle Scholar
  17. 17.
    J. A. Sellwood, W. H. Trick, R. G. Carlberg, J. Coronado, and H.-W. Rix, Mon. Not. R. Astron. Soc. 484, 3154 (2019).ADSCrossRefGoogle Scholar
  18. 18.
    W. S. Dias, H. Monteiro, J. R. D. Lepine, R. Prates, C. D. Gneiding, and M. Sacchi, Mon. Not. R. Astron. Soc. 481, 3887 (2018).ADSCrossRefGoogle Scholar
  19. 19.
    C. Soubiran, T. Cantat-Gaudin, M. Romero-Gomez, L. Casamiquela, et al., Astron. Astrophys. 619, A155 (2018).CrossRefGoogle Scholar
  20. 20.
    M. Altmann, H. Edelmann, and K. S. de Boer, Astron. Astrophys. 414, 181 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    S. K. Randall, S. Bagnulo, E. Ziegerer, S. Geier, and G. Fontaine, Astron. Astrophys. 576, A65 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    P. Martin, C. S. Jeffery, N. Naslim, and V. M. Woolf, Mon. Not. R. Astron. Soc. 467, 68 (2017).ADSGoogle Scholar
  23. 23.
    E.-M. Pauli, R. Napiwotzki, U. Heber, M. Altmann, and M. Odenkirchen, Astron. Astrophys. 447, 173 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    Y. Bu, Z. Lei, G. Zhao, J. Bu, and J. Pan, Astrophys. J. Suppl. 233, 2 (2017).ADSCrossRefGoogle Scholar
  25. 25.
    S. Geier, R. Raddi, N. P. Gentile Fusillo, and T. R. Marsh, Astron. Astrophys. 621, 38 (2019).ADSCrossRefGoogle Scholar
  26. 26.
    V. V. Bobylev and A. T. Bajkova, Astron. Lett. 45 (2019, in press).Google Scholar
  27. 27.
    A. S. Rastorguev, N. D. Utkin, M. V. Zabolotskikh, A. K. Dambis, A. T. Bajkova, and V. V. Bobylev, Astrophys. Bull. 72, 122 (2017).ADSCrossRefGoogle Scholar
  28. 28.
    V. V. Vityazev, A. S. Tsvetkov, V. V. Bobylev, and A. T. Bajkova, Astrophysics 60, 462 (2017).ADSCrossRefGoogle Scholar
  29. 29.
    V. V. Bobylev and A. T. Bajkova, Astron. Lett. 43, 452 (2017).ADSCrossRefGoogle Scholar
  30. 30.
    J. P. Vallée, Astrophys. Space Sci. 362, 79 (2017).ADSCrossRefGoogle Scholar
  31. 31.
    R. de Grijs and G. Bono, Astrophys. J. Suppl. 232, 22 (2017).ADSCrossRefGoogle Scholar
  32. 32.
    T. Camarillo, M. Varun, M. Tyler, and R. Bharat, Publ. Astron. Soc. Pacif. 130, 4101 (2018).CrossRefGoogle Scholar
  33. 33.
    K. F. Ogorodnikov, Dynamics of Stellar Systems (Pergamon, Oxford, 1965).zbMATHGoogle Scholar
  34. 34.
    F. Arenou, X. Luri, C. Babusiaux, C. Fabricius, et al., Astron. Astrophys. 616, A17 (2018).CrossRefGoogle Scholar
  35. 35.
    K. G. Stassun and G. Torres, Astrophys. J. 862, 61 (2018).ADSCrossRefGoogle Scholar
  36. 36.
    A. G. Riess, S. Casertano, W. Yuan, L. Macri, et al., Astrophys. J. 861, 126 (2018).ADSCrossRefGoogle Scholar
  37. 37.
    J. C. Zinn, M. H. Pinsonneault, D. Huber, and D. Stello, arXiv:1805.02650 [astro-ph.SR] (2018).Google Scholar
  38. 38.
    L. N. Yalyalieva, A. A. Chemel, E. V. Glushkova, A. K. Dambis, and A. D. Klinichev, Astrophys. Bull. 73, 335 (2018).ADSCrossRefGoogle Scholar
  39. 39.
    H. W. Leung and J. Bovy, arXiv:1902.08634 [astroph.GA] (2019).Google Scholar
  40. 40.
    D. Graczyk, G. Pietrzynski, W. Gieren, J. Storm, et al., Astrophys. J. 872, 85 (2019).ADSCrossRefGoogle Scholar
  41. 41.
    T. E. Lutz and D. H. Kelker, Publ. Astron. Soc. Pacif. 85, 573 (1973).ADSCrossRefGoogle Scholar
  42. 42.
    C. A. L. Bailer-Jones, Publ. Astron. Soc. Pacif. 127, 994 (2015).ADSCrossRefGoogle Scholar
  43. 43.
    X. Luri, A. G. A. Brown, L. M. Sarro, F. Arenou, et al., Astron. Astrophys. 616, A9 (2018).CrossRefGoogle Scholar
  44. 44.
    M. Chiba and T. C. Beers, Astron. J. 119, 2843 (2000).ADSCrossRefGoogle Scholar
  45. 45.
    B. Anguiano, S. R. Majewski, K. C. Freeman, A. W. Mitschang, and M. C. Smith, Mon. Not. R. Astron. Soc. 474, 854 (2018).ADSCrossRefGoogle Scholar
  46. 46.
    J. H. J. Hagen, A. Helmi, P. T. de Zeeuw, and L. Posti, arXiv:1902.05268 [astro-ph.GA] (2019).Google Scholar
  47. 47.
    R. Schönrich, J. Binney, and W. Dehnen, Mon. Not. R. Astron. Soc. 403, 1829 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Main (Pulkovo) Astronomical ObservatoryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations