Astronomy Reports

, Volume 63, Issue 11, pp 900–909 | Cite as

Large-Scale Instability During Gravitational Collapse and the Escaping Neutrino Spectrum During a Supernova Explosion

  • A. G. AksenovEmail author
  • V. M. Chechetkin


A large fraction of the energy released during the gravitational collapse of the core of a massive star is carried by neutrinos. Neutrinos play the main role in explaining core-collapse supernovae. A self-consistent formulation of the gravitational collapse is solved using 2D gas dynamics, taking into account the spectral transport of neutrinos in the framework of neutrino flux-limited diffusion. Large-scale convection leads to an increase in the mean energy of the neutrinos from 10 to 15 MeV, which is important for explaining supernovae, as well as for designing experiments on detecting high-energy neutrinos from supernovae.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the anonymous referee for a careful reading of the manuscript, useful comments, and clarifying questions. The work of A.G. Aksenov was carried out in the framework of the state task of the Institute for Computer Aided Design of the Russian Academy of Sciences.


  1. 1.
    W. A. Fowler and F. Hoyle, Astrophys. J. Suppl. 9, 201 (1964).ADSCrossRefGoogle Scholar
  2. 2.
    S. S. Gershteǐn, L.N. Ivanova, V.S. Imshennik, M. Y. Khlopov, and V. M. Chechetkin, Sov. J. Ex-perim. Theoret. Phys. Letters 26, 178 (1977).ADSGoogle Scholar
  3. 3.
    V. S. Imshennik and D. K. Nadezhin, Astrophys. Space Sci. Rev. 8, 1 (1989).ADSGoogle Scholar
  4. 4.
    H. A. Bethe, Rev. Mod. Phys. 62, 801 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    H.-T. Janka, K. Langanke, A. Marek, G. Martínez-Pinedo, and B. Müller, Phys. Rep. 442, 38 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    V. S. Imshennik and D. K. Nadezhin, Sov. J. Experim. Theoret. Phys. 36, 821 (1973).ADSGoogle Scholar
  7. 7.
    D. K. Nadezhin, Astrophys. Space Sci. 49, 399 (1977).ADSCrossRefGoogle Scholar
  8. 8.
    S. Bruenn, Astrophys. J. Suppl. 58, 771 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    L. Dessart, A. Burrows, E. Livne, and C. D. Ott, Astrophys. J. 673, L43 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    F. D. Swesty and E. S. Myra, Astrophys. J. Suppl. 181, 1 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    B. Müller, H.-T. Janka, and H. Dimmelmeier, Astrophys. J. Suppl. 189, 104 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    A. Mezzacappa and S. W. Bruenn, Astrophys. J. 405, 637 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    A. Mezzacappa and S. W. Bruenn, Astrophys. J. 405, 669 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    A. Mezzacappa and S. W. Bruenn, Astrophys. J. 410, 740 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    A. Mezzacappa, M. Liebendörfer, O. E. Messer, W. R. Hix, F.-K. Thielemann, and S. W. Bruenn, Phys. Rev. Lett. 86, 1935 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    E. J. Lentz, A. Mezzacappa, O. E. B. Messer, M. Liebendörfer, W. R. Hix, and S.W. Bruenn, Astrophys. J. 747 id. 73 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    M. Herant, W. Benz, W. R. Hix, C. L. Fryer, and S. A. Colgate, Astrophys. J. 435, 339 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    A. Burrows, J. Hayes, and B. A. Fryxell, Astrophys. J. 450, 830 (1995).ADSCrossRefGoogle Scholar
  19. 19.
    J. W. Murphy, and C. Meakin, Astrophys. J. 742, id. 74 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    J. C. Dolence, A. Burrows, and W. Zhang, Astrophys. J. 800, id. 10 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    S. M. Couch, and C. D. Ott, Astrophys. J. 778, id. L7 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    A. Wongwathanarat, E. Müller, and H.-T. Janka, Astron. and Astrophys. 577, id. A48 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    S. M. Couch and C. D. Ott, Astrophys. J. 799, id. 5 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    D. Radice, C. D. Ott, E. Abdikamalov, S. M. Couch, R. Haas, and E. Schnetter, Astrophys. J. 820, id. 76 (2016).ADSCrossRefGoogle Scholar
  25. 25.
    V. M. Chechetkin, S. D. Ustyugov, A. A. Gorbunov, and V. I. Polezhaev, Astron. Letters 23, 30 (1997).ADSGoogle Scholar
  26. 26.
    A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 60, 655 (2016).ADSCrossRefGoogle Scholar
  27. 27.
    A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 62, 251 (2018).ADSCrossRefGoogle Scholar
  28. 28.
    V. M. Chechetkin and A. G. Aksenov, Phys. Atomic Nuclei 81, 128 (2018).CrossRefGoogle Scholar
  29. 29.
    V. M. Suslin, S. D. Ustyugov, V. M. Chechetkin, and G. P. Churkina, Astron. Rep. 45, 241 (2001).ADSCrossRefGoogle Scholar
  30. 30.
    I. V. Baikov, V. M. Suslin, V. M. Chechetkin, V. Bychkov, and L. Stenflo, Astron. Rep. 51, 274 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 56, 193 (2012).ADSCrossRefGoogle Scholar
  32. 32.
    A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 58, 442 (2014).ADSCrossRefGoogle Scholar
  33. 33.
    I. V. Baikov and V. M. Chechetkin, Astron. Rep. 48, 229 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    A. G. Aksenov, Comp. Math. and Math. Physics 55, 1752 (2015).ADSCrossRefGoogle Scholar
  35. 35.
    G. V. Vereshchagin and A. G. Aksenov, Relativistic Kinetic Theory with Applications in Astrophysics and Cosmology (Cambridge University Press, 2017).Google Scholar
  36. 36.
    A. G. Aksenov, Astron. Letters 24, 482 (1998).ADSGoogle Scholar
  37. 37.
    A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 62, 834 (2018).ADSCrossRefGoogle Scholar
  38. 38.
    G. S. Bisnovatyi-Kogan, Astrophysics 55, 387 (2012).ADSCrossRefGoogle Scholar
  39. 39.
    V. S. Imshennik and V. M. Chechetkin, Soviet Astron. 14, 747 (1971).ADSGoogle Scholar
  40. 40.
    R. M. Bionta, G. Blewitt, C. B. Bratton, D. Casper, and A. Ciocio, Phys. Rev. Lett. 58, 1494 (1987).ADSCrossRefGoogle Scholar
  41. 41.
    K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, and Y. Oyama, Phys. Rev. Lett. 58, 1490 (1987).ADSCrossRefGoogle Scholar
  42. 42.
    E. N. Alekseev, L. N. Alekseeva, V. I. Volchenko, and I. V. Krivosheina, Sov. J. of Exp. and Theor. Phys. Lett. 45, 589 (1987).ADSGoogle Scholar
  43. 43.
    R. Schaeffer, Y. Declais, and S. Jullian, Nature 330, 142 (1987).ADSCrossRefGoogle Scholar
  44. 44.
    A. G. Aksenov, V. F. Tishkin, and V. M. Chechetkin, Math. Models Computer Simulations 11, 360 (2019).MathSciNetCrossRefGoogle Scholar
  45. 45.
    A. G. Aksenov, Astron. Letters 25, 185 (1999).ADSGoogle Scholar
  46. 46.
    A. G. Aksenov and S. I. Blinnikov, Astron. Astrophys. 290, 674 (1994).ADSGoogle Scholar
  47. 47.
    P. Ledoux, Astrophys. J. 105, 305 (1947).ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    G. S. Bisnovatyj-Kogan, Physical Problems of the Theory of Stellar Evolution (Moscow, Nauka, 1989).Google Scholar
  49. 49.
    S. Chandrasekhar and N. R. Lebovitz, Astrophys. J. 138, 185 (1963).ADSCrossRefGoogle Scholar
  50. 50.
    A. Burrows, Astrophys. J. 318, L57 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute for Computer Aided DesignRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations