Advertisement

Astronomy Reports

, Volume 63, Issue 8, pp 633–641 | Cite as

The Photolysis of Aromatic Hydrocarbons Adsorbed on the Surfaces of Cosmic Dust Grains

  • M. S. MurgaEmail author
  • V. N. Varakin
  • A. V. Stolyarov
  • D. S. Wiebe
Article

Abstract

The results of laboratory mass-spectrometer studies of the laser-induced dissociation of molecules of simple aromatic hydrocarbons adsorbed on a quartz substrate under the conditions of deep vacuum and low temperatures are adapted to the physical and chemical conditions in regions of active star formation in molecular clouds. The main properties of the photolysis of physically adsorbed molecules compared to the photodissociation of isolated molecules in the gas phase are identified. The relevance of molecular photolytic desorption to the real conditions in the interstellar medium is analyzed, in particular, to the conditions in photodissociation regions. It is shown that the photodissociation of adsorbed benzene occurs along other channels and with appreciably lower efficiency than does the corresponding process in the gas phase. The photodissociation of aromatic hydrocarbons adsorbed on the surfaces of interstellar grains cannot make a large contribution to the abundance of hydrocarbons with small numbers of atoms observed in the interstellar medium.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. C. Gillett, W. J. Forrest, and K. M. Merrill, Astrophys. J. 183, 87 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    K. Sellgren, M. W. Werner, and H. L. Dinerstein, Astrophys. J. Lett. 271, L13 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    D. K. Aitken, P. F. Roche, P. M. Spenser, and B. Jones, Mon. Not. R. Astron. Soc. 195, 921 (1981).ADSCrossRefGoogle Scholar
  4. 4.
    A. Leger and J. L. Puget, Astron. Astrophys. 137, L5 (1984).ADSGoogle Scholar
  5. 5.
    L. J. Allamandola, D. M. Hudgins, and S. A. Sandford, Astrophys. J. Lett. 511, L115 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    K. Sellgren, T. Y. Brooke, R. G. Smith, and T. R. Geballe, Astrophys. J. Lett. 449, L69 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    L. J. Allamandola, EAS Publ. Ser. 46, 305 (2011).CrossRefGoogle Scholar
  8. 8.
    J. Pety, D. Teyssier, D. Fossé, M. Gerin, E. Roueff, A. Abergel, E. Habart, and J. Cernicharo, Astron. Astrophys. 435, 885 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    V. V. Guzmán, J. Pety, J. R. Goicoechea, M. Gerin, E. Roueff, P. Gratier, and K. I. Öberg, Astrophys. J. Lett. 800, L33 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    H. W. Jochims, E. Ruhl, H. Baumgartel, S. Tobita, and S. Leach, Astrophys. J. 420, 307 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    T. Allain, S. Leach, and E. Sedlmayr, Astron. Astrophys. 305, 602 (1996).ADSGoogle Scholar
  12. 12.
    R. Visser, V. C. Geers, C. P. Dullemond, J.-C. Augereau, K. M. Pontoppidan, and E. F. van Dishoeck, Astron. Astrophys. 466, 229 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    V. Le Page, T. P. Snow, and V. M. Bierbaum, Astrophys. J. Suppl. 132, 233 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    M. S. Murga, S. A. Khoperskov, and D. S. Wiebe, Astron. Rep. 60, 233 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    J. Zhen, P. Castellanos, D. M. Paardekooper, N. Ligterink, H. Linnartz, L. Nahon, C. Joblin, and A. G. G. M. Tielens, Astrophys. J. Lett. 804, L7 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    P. A. Gerakines, W. A. Schutte, and P. Ehrenfreund, Astron. Astrophys. 312, 289 (1996).ADSGoogle Scholar
  17. 17.
    H. Cottin, M. H. Moore, and Y. Bénilan, Astrophys. J. 590, 874 (2003).ADSCrossRefGoogle Scholar
  18. 18.
    K. I. Öberg, E. F. van Dishoeck, H. Linnartz, and S. Andersson, Astrophys. J. 718, 832 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    K. I. Öberg, Chem. Rev. 116, 9631 (2016).CrossRefGoogle Scholar
  20. 20.
    V. N. Varakin, J. Photochem. Photobiol., A 356, 298 (2018).CrossRefGoogle Scholar
  21. 21.
    V. N. Varakin, Chem. Phys. Lett. 714, 114 (2019).ADSCrossRefGoogle Scholar
  22. 22.
    V. N. Varakin, Laser Phys. 26, 016001 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    J. Zhen, D. M. Paardekooper, A. Candian, H. Linnartz, and A. G. G. M. Tielens, Chem. Phys. Lett. 592, 211 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    J. Zhen, P. Castellanos, D. M. Paardekooper, H. Linnartz, and A. G. G. M. Tielens, Astrophys. J. 797, L30 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    V. V. Kislov, T. L. Nguyen, A. M. Mebel, S. H. Lin, and S. C. Smith, J. Chem. Phys. 120, 7008 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    G. B. Esplugues, S. Cazaux, R. Meijerink, M. Spaans, and P. Caselli, Astron. Astrophys. 52, 591 (2016).Google Scholar
  27. 27.
    H. Andrews, C. Boersma, M. W. Werner, J. Livingston, L. J. Allamandola, and A. G. G. M. Tielens, Astrophys. J. 807, 99 (2015).ADSCrossRefGoogle Scholar
  28. 28.
    K. M. Sandstrom, A. D. Bolatto, B. T. Draine, C. Bot, and S. Stanimirović, Astrophys. J. 715, 701 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    J. S. Mathis, P. G. Mezger, and N. Panagia, Astron. Astrophys. 128, 212 (1983).ADSGoogle Scholar
  30. 30.
    T. Kovacs, M. Blitz, P. W. Seakins, and M. Pilling, J. Chem. Phys. 131, 204304 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    F. J. Capalbo, Y. Bénilan, N. Fray, M. Schwell, N. Champion, E.-T. Es-Sebbar, T. T. Koskinen, L. Ivan, and R. V. Yelle, Icarus 265, 95 (2016).ADSCrossRefGoogle Scholar
  32. 32.
    J. R. Goicoechea, D. Teyssier, M. Etxaluze, P. F. Goldsmith, V. Ossenkopf, M. Gerin, E. A. Bergin, J. H. Black, J. Cernicharo, S. Cuadrado, et al., Astrophys. J. 812, 75 (2015).ADSCrossRefGoogle Scholar
  33. 33.
    A. P. Jones, L. Fanciullo, M. Köhler, L. Verstraete, V. Guillet, M. Bocchio, and N. Ysard, Astron. Astrophys. 558, A62 (2013).ADSCrossRefGoogle Scholar
  34. 34.
    J. C. Weingartner and B. T. Draine, Astrophys. J. 548, 296 (2001).ADSCrossRefGoogle Scholar
  35. 35.
    J. Bouwman, A. L. Mattioda, H. Linnartz, and L. J. Allamandola, Astron. Astrophys. 525, A93 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. S. Murga
    • 1
    • 2
    Email author
  • V. N. Varakin
    • 2
  • A. V. Stolyarov
    • 2
  • D. S. Wiebe
    • 1
  1. 1.Institute of AstronomyRussian Academy of SciencesMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations