Astronomy Reports

, Volume 63, Issue 2, pp 94–106 | Cite as

The Influence of Superflares of Host Stars on the Dynamics of the Envelopes of Hot Jupiters

  • A. A. Cherenkov
  • I. F. Shaikhislamov
  • D. V. BisikaloEmail author
  • V. I. Shematovich
  • L. Fossati
  • C. Möstl


Results of a study of the influence of solar-type host stars superflares on the gas dynamics of the extended envelopes of giant exoplanets are presented. During flare events, the radiation intensity of the host star in the extreme ultraviolet and soft X-ray can increase by several orders of magnitude for a short time, leading to strong local heating of the exoplanet atmosphere on the side facing the star, with the formation of shocks in the atmosphere. Computations of the gas-dynamical response of the atmosphere of the hot Jupiter HD 209458b to characteristic superflares of solar-like stars were carried out earlier in [1] using a one-dimensional aeronomical model correctly taking into account heating and chemical processes in the atmosphere. To investigate the outflow of atmospheric gas, the results obtained with this onedimensional model were used as simple boundary conditions for computations of the three-dimensional flow structure after a flare. The results of these three-dimensional gas-dynamical computations show that the mass ejection of the flare increases the size of the envelope over several hours, which could be detected with existing observing facilities. It is shown that the mass-loss rates for the most powerful superflare considered could be enhanced by an order of magnitude over several tens of hours after the flare.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. V. Bisikalo, A. A. Cherenkov, V. I. Shematovich, L. Foscati, and C. Möstl, Astron. Rep. 62, 648 (2018).ADSCrossRefGoogle Scholar
  2. 2.
    A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Désert, G. E. Ballester, R. Ferlet, G. Hébrard, and M. Mayor, Nature 422, 143 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    L. Ben-Jaffel, Astrophys. J. 671, L61 (2007).Google Scholar
  4. 4.
    A. Lecavelier Des Etangs, D. Ehrenreich, A. Vidal-Madjar, G. E. Ballester, et al.,Astron. Astrophys. 514, A72 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    L. Fossati, C. A. Haswell, C. S. Froning, L. Hebb, et al., Astrophys. J. 714, L222 (2010).Google Scholar
  6. 6.
    J. Schneider, C. Dedieu, P. le Sidaner, R. Savalle, and I. Zolotukhin, Astron. Astrophys. 532, A79 (2011).CrossRefGoogle Scholar
  7. 7.
    H. Lammer, F. Selsis, I. Ribas, E. F. Guinan, S. J. Bauer, and W. W. Weiss, Astrophys. J. 598, L121 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    R. V. Yelle, Icarus 170, 167 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    A. GarcíaMuсoz, Planet. Space Sci. 55, 1426 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    R. A. Murray-Clay, E. I. Chiang, and N. Murray, Astrophys. J. 693, 23 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    T. T Koskinen, M. J. Harris, R. V. Yelle, and P. Lavvas, Icarus 226, 1678 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    K. G. Kislyakova, M. Holmström, H. Lammer, P. Odert, and M. L. Khodachenko, Science 346, 981 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    I. F. Shaikhislamov, M. L. Khodachenko, Yu. L. Sasunov, H. Lammer, K. G. Kislyakova, and N. V. Erkaev, Astrophys. J. 795, 132 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, and P. A. Prokopov, Astrophys. J. 813, 50 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, K. G. Kislyakova, et al., Astrophys. J. 832, 173 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    D. V. Bisikalo, P. V. Kaigorodov, D. E. Ionov, and V. I. Shematovich, Astron. Rep. 57, 715 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    A. A. Cherenkov, D. V. Bisikalo, L. Fossati, and C. Möstl, Astrophys. J. 846, 31 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    H. Maehara, T. Shibayama, S. Notsu, Y. Notsu, et al., Nature 485, 478 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    T. Shibayama, H. Maehara, S. Notsu, and Y. Notsu, Astrophys. J. Suppl. 209, 5 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    H. Maehara, T. Shibayama, Y. Notsu, S. Notsu, S. Honda, D. Nogami, and K. Shibata, Earth, Planets, Space 67, 59 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    D. V. Bisikalo, V. I. Shematovich, A. A. Cherenkov, L. Fossati, C. Möstl, Astrophys. J. 869, 108 (2018).ADSCrossRefGoogle Scholar
  22. 22.
    D. Bisikalo, P. Kaygorodov, D. Ionov, V. Shematovich, H. Lammer, and L. Fossati, Astrophys. J. 764, 19 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    D. E. Ionov, V. I. Shematovich, and Ya. N. Pavlyuchenkov, Astron. Rep. 61, 387 (2017).ADSCrossRefGoogle Scholar
  24. 24.
    D. E. Ionov, Y. N. Pavlyuchenkov, and V. I. Shematovich, Mon. Not. R. Astron. Soc. 476, 5639 (2018).ADSCrossRefGoogle Scholar
  25. 25.
    Ya. N. Pavlyuchenkov, A. G. Zhilkin, E. I. Vorobyov, and A. M. Fateeva, Astron. Rep. 59, 133 (2015).ADSCrossRefGoogle Scholar
  26. 26.
    A. A. Cherenkov, D. V. Bisikalo, and A. G. Kosovichev, Mon. Not. R. Astron. Soc. 475, 605 (2018).ADSCrossRefGoogle Scholar
  27. 27.
    G. L. Withbroe, Astrophys. J. 325, 442 (1988).ADSCrossRefGoogle Scholar
  28. 28.
    A. A. Cherenkov, D. V. Bisikalo, and P. V. Kaigorodov, Astron. Rep. 58, 679 (2014).ADSCrossRefGoogle Scholar
  29. 29.
    P. L. Roe, J. Comp. Phys. 43, 357 (1981).ADSCrossRefGoogle Scholar
  30. 30.
    D. Balsara, Astrophys. J. Suppl. 132, 83 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Cherenkov
    • 1
  • I. F. Shaikhislamov
    • 2
  • D. V. Bisikalo
    • 1
    Email author
  • V. I. Shematovich
    • 1
  • L. Fossati
    • 3
  • C. Möstl
    • 3
  1. 1.Institute of AstronomyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Laser Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Space Research InstituteAustrian Academy of SciencesGrazAustria

Personalised recommendations