Advertisement

Astronomy Reports

, Volume 63, Issue 1, pp 49–65 | Cite as

A Giant Water Maser Flare in the Galactic Source IRAS 18316-0602

  • L. N. Vol’vachEmail author
  • A.E. Vol’vach
  • M.G. Larionov
  • G. C. MacLeod
  • S. P. van den Heever
  • P. Wolak
  • M. Olech
  • A.V. Ipatov
  • D.V. Ivanov
  • A. G. Mikhailov
  • A.E. Mel’nikov
  • K. Menten
  • A. Belloche
  • A. Weiss
  • P. Mazumdar
  • F. Schuller
Article
  • 3 Downloads

Abstract

The results of long-term monitoring of the Galactic maser source IRAS 18316–0602 (G25.65+1.05) in the water-vapor line at frequency f = 22.235 GHz (616–523 transitioin) carried out on the 22-m Simeiz, 26-m HartRAO, and 26-m Torun radio telescopes are reported. The source has been episodically observed on the Simeiz telescope since 2000, with more regular observations beginning in 2017. A double flare was observed beginning in September 2017 and continuing to February 2018, which was the most powerful flare registered over the entire history of observations of this object. Most of the monitoring of the flare was carried out in a daily regime. Detailed analysis of the variations of the flux density, which reached a maximum value P ≈ 1.3 × 105 Jy, have led to important scientific conclusions about possible mechanisms for the emission in this water line. The exponential growth in the flux density in this double flare testifies that it was associated with a maser that was unsaturated right up to the maximum flux densities observed. An additional argument suggesting the maser was unsaturated is the relatively moderate degree of linear polarization (≈30%), nearly half the value displayed by the Galactic kilomasers in Orion KL. The accurate distance estimate for IRAS 18316–0602 (12.5 kpc) and the flux density at the flare maximum (≈1.3 × 105 Jy) makes this the most powerful Galactic kilomaser known. The double form of the flare with exponential rises in flux density rules out the possibility that the flare is the effect of directivity of a radiation beam relative to the observer. The physical nature of the flare is most likely related to internal parameters of the medium in which the maser clumps radiating in the water line are located. A rapid, exponential growth in the flux density of a kilomaser and associated exponential decays requires the presence of an explosive increase in the density of the medium and the photon flux, leading to an increase in the temperature by 10–40 K above the initial base level. A mechanism for the primary energy release in IRAS 18316–0602 is proposed, which is associated with a multiple massive star system located in a stage of evolution preceding its entry onto the main sequence. A flare in this object could initiate gravitational interaction between the central star and a massive companion at its periastron. The resulting powerful gravitational perturbation could lead to the ejection of the envelope of the central supermassive star, which gives rise to an explosive increase in the density and temperature of the associate gas–dust medium when it reaches the disk, where the maser clumps are located.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. C. Cheung, D. M. Rank, C. H. Townes, D. D. Thornton, and W. J. Welch, Nature (London, U.K.) 221, 626 (1969).ADSCrossRefGoogle Scholar
  2. 2.
    B. F. Burke, K. J. Johnston, V. A. Efanov, B. G. Clark, et al., Sov. Astron. 16, 379 (1972).ADSGoogle Scholar
  3. 3.
    M. Harwit, D. A. Neufeld, G. J. Melnik, and M. J. Kaufman, Astrophys. J. Lett. 497, L105 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    C. Ceccarelli, E. Caux, G. J.White, S. Molinari, et al., Astron. Astrophys. 331, 372 (1998).ADSGoogle Scholar
  5. 5.
    B. Nisini, M. Benedettini, T. Giannini, E. Caux, et al., Astron. Astrophys. 350, 529 (1999).ADSGoogle Scholar
  6. 6.
    S. Maret, C. Caccarelli, E. Caux, A.G.G.M. Tielens, and A. Castels, Astron. Astrophys. 395, 573 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    F. Palla, J. Brand, R. Casaroni, G. Comoretto, and M. Felli, Astron. Astrophys. 246, 249 (1991).ADSGoogle Scholar
  8. 8.
    S. Kurtz, E. Curchwell, and D. O. S. Wood, Astrophys. J. Suppl. 91, 659 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    W. H. McCutcheon, P. E. Dewdney, R. Purton, and T. Sato, Astron. J. 101, 1435 (1991).ADSCrossRefGoogle Scholar
  10. 10.
    S. Kurtz and P. Hofner, Astron. J. 130, 711 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    T. Jenness, P. F. Scott, and R. Padman, Mon. Not. R. Astron. Soc. 276, 1024 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    W. H. McCutcheon, T. Sato, C. R. Purton, H. E. Matthews, and P. E. Dewfney, Astron. J. 110, 1762 (1995).ADSCrossRefGoogle Scholar
  13. 13.
    L. Bronfman, L. A. Nyman, and J. May, Astron. Astrophys. Suppl. 115, 81 (1996).ADSGoogle Scholar
  14. 14.
    S. Molinari, J. Brand, R. Cesaroni, and F. Palla, Astron. Astrophys. 308, 573 (1996).ADSGoogle Scholar
  15. 15.
    S. P. Todd and S. K. Ronsay Howat, Mon. Not. R. Astron. Soc. 367, 238 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    E. L. Gibb, D. C. Whittet, A. C. A. Boogert, and A. G. G. M. Tielens, Astrophys. J. Suppl. 151, 35 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    J. Brand, R. Cesaroni, P. Caselli, M. Catarzi, et al., Astron. Astrophys. Suppl. 103, 541 (1994).ADSGoogle Scholar
  18. 18.
    D. J. van derWalt, M. J. Gaylard, and G. C. Macleod, Astron. Astrophys. Suppl. 110, 81 (1995).ADSGoogle Scholar
  19. 19.
    C. Codella, M. Felli, and V. Natale, Astron. Astrophys. 311, 971 (1996).ADSGoogle Scholar
  20. 20.
    N. S. Nesterov, A. E. Vol’vach, I. D. Strepka, V. M. Shul’ga, V. I. Lebed’, and A. M. Pilipenko, Radiofiz. Radioastron. 5, 320 (2000).Google Scholar
  21. 21.
    A. E. Vol’vach, L. N. Vol’vach, I. D. Strepka, A. V. Antyufeev, V. V. Myshenko, S. Yu. Zubrin, V. M. Shul’ga, et al., Izv. Krymsk. Astrofiz. Obs. 104, 72 (2009).Google Scholar
  22. 22.
    T. M. Heckman and W. T. Sullivan, Astrophys. Lett. 17, 105 (1976).ADSGoogle Scholar
  23. 23.
    F. D. Kahn, Astron. Astrophys. 37, 149 (1974).ADSGoogle Scholar
  24. 24.
    W. K. Hartmann, Astrophys. J. Lett. 149, L87 (1967).ADSCrossRefGoogle Scholar
  25. 25.
    P. Goldreich and J. Kwan, Astrophys. J. 191, 93 (1974).ADSCrossRefGoogle Scholar
  26. 26.
    I. J. Stief, B. Donn, S. Glicker, E. F. Gentien, and J. E. Mentall, Astrophys. J. 171, 21 (1972).ADSCrossRefGoogle Scholar
  27. 27.
    F. D. Kahn, Astron. Astrophys. 37, 149 (1974).ADSGoogle Scholar
  28. 28.
    F. O. Clark, D. Buhl, and L. E. Snyder, Astrophys. J. 190, 545, (1974).ADSCrossRefGoogle Scholar
  29. 29.
    B. F. Burke, T. S. Giuffrida, and A. D. Haschick, Astrophys. J. Lett. 226, L21 (1978).ADSCrossRefGoogle Scholar
  30. 30.
    P. Goldreich, D. A. Keeley, and J. J. Kwan, Astrophys. J. 179, 111 (1973).ADSCrossRefGoogle Scholar
  31. 31.
    P. Goldreich, D. A. Keeley, and J. J. Kwan, Astrophys. J. 182, 55 (1973).ADSCrossRefGoogle Scholar
  32. 32.
    N. L. Cohen and S. H. Zisk, Bull. Am. Astron. Soc. 12, 507 (1980).ADSGoogle Scholar
  33. 33.
    S. J. Chan, T. Henning, and K. Schreyer, Astrophys. J. Suppl. 115, 285 (1996).ADSGoogle Scholar
  34. 34.
    B. Mookerjea and S. K. Ghosh, J. Astrophys. Astron. 20, 1 (1999).ADSCrossRefGoogle Scholar
  35. 35.
    J. A. Green and N. M. McClure-Griffiths, Mon. Not. R. Astron. Soc. 417, 2500 (2011).ADSCrossRefGoogle Scholar
  36. 36.
    E. E. Lekht, M. I. Pashchenko, G. M. Rudnitskii, and A. M. Tolmachev, Astron. Rep. 62, 213 (2018).ADSCrossRefGoogle Scholar
  37. 37.
    R. Valdettaro, F. Palla, J. Brand, R. Cesaroni, G. Comoretto, M. Felli, and F. Palagi, Astron. Astrophys. 383, 244 (2002).ADSCrossRefGoogle Scholar
  38. 38.
    G. M. Rudnitskii, E. E. Lekht, and I. I. Berulis, Astron. Lett. 25, 398 (1999).ADSGoogle Scholar
  39. 39.
    A. E. Volvach, L. N. Volvach, M. Gordon, E. E. Lekht, G. M. Rudnitskij, and A. M. Tolmachev, Astron. Telegram, No. 10728, 1 (2017).Google Scholar
  40. 40.
    L. N. Volvach, A. E. Volvach, M. G. Larionov, G. C. MacLeod, S. P. van den Heever, P. Wolak, M. Olech, Monthly Not. Roy. Astron. Soc. 482, Issue 1, L90 (2019).ADSCrossRefGoogle Scholar
  41. 41.
    T. Omodaka, T. Maeda, M. Miyoshi, A. Okudaira, et al., Publ. Astron. Soc. Jpn. 51, 333 (1999).ADSCrossRefGoogle Scholar
  42. 42.
    T. Shimoikura, H. Kobayashi, T. Omodaka, P. J. Diamond, L. I.Matveyenko, and K. Fujisawa, Astrophys. J. 634, 459 (2005).ADSCrossRefGoogle Scholar
  43. 43.
    Z. Abraham, N. L. Cohen, R. Ophel, J. C. Raffaelli, and S. H. Zisk, Astron. Astrophys. 100, 10 (1981).ADSGoogle Scholar
  44. 44.
    Z. Abraham, J. W. S. Vilas Boas, and L. F. del Ciampo, Astron. Astrophys. 167, 311 (1986).ADSGoogle Scholar
  45. 45.
    P. Goldreich and J. Kwan, Astrophys. J. 190, 27 (1974).ADSCrossRefGoogle Scholar
  46. 46.
    D. N. Friedal and S. L. Widicus Weaver, Astrophys. J. 742, 64 (2011).ADSCrossRefGoogle Scholar
  47. 47.
    M. Felly, E. Churchwell, T. L. Wilson, and G. B. Taylor, Astron. Astrophys. 98, 137 (1993).ADSGoogle Scholar
  48. 48.
    S. Okumura, T. Yamashita, and S. Saco, Publ. Astron. Soc. Jpn. 63, 823 (1999).ADSCrossRefGoogle Scholar
  49. 49.
    T. Hirota, M. Tsuboi, and Y. Kurono, Publ. Astron. Soc. Jpn. 66, 106 (2014).ADSCrossRefGoogle Scholar
  50. 50.
    T. Hirota, M. K. Kim, and Y. Kurono, Astrophys. J. Lett. 739, 59 (2011).ADSCrossRefGoogle Scholar
  51. 51.
    G. Garay, J. M. Moran, and A. D. Haschick, Astrophys. J. 338, 244 (2011).ADSCrossRefGoogle Scholar
  52. 52.
    T. Shimoikura, H. Kobayashi, T. Omodaka, P. J. Diamond, L. I.Matveyenko, and K. Fujisawa, Astrophys. J. 634, 459 (2005).ADSCrossRefGoogle Scholar
  53. 53.
    S. Parfenov and A. M. Sobolev, Mon. Not. R. Astron. Soc. 444, 620 (2014).ADSCrossRefGoogle Scholar
  54. 54.
    K. Inayoshi, K. Sugiyama, and T. Hosokawa, Astrophys. J. 773, 70 (2013).CrossRefGoogle Scholar
  55. 55.
    J. P. Maswanganye, M. J. Gaylard, S. Goedhart, D. J. Walt, and R. S. van der Booth, Mon. Not. R. Astron. Soc. 446, 2730 (2015).ADSCrossRefGoogle Scholar
  56. 56.
    R. Genzel, D. Dowens, J. M. Moran, K. J. Johnston, et al., Astron. Astrophys. 78, 239 (1979).ADSGoogle Scholar
  57. 57.
    G. Siringo, E. Kreysa, A. Kovács, F. Schuller, et al., Astron. Astrophys. 497, 945 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. N. Vol’vach
    • 1
    Email author
  • A.E. Vol’vach
    • 1
    • 2
  • M.G. Larionov
    • 3
  • G. C. MacLeod
    • 4
  • S. P. van den Heever
    • 4
  • P. Wolak
    • 5
  • M. Olech
    • 5
  • A.V. Ipatov
    • 2
  • D.V. Ivanov
    • 2
  • A. G. Mikhailov
    • 2
  • A.E. Mel’nikov
    • 2
  • K. Menten
    • 6
  • A. Belloche
    • 6
  • A. Weiss
    • 6
  • P. Mazumdar
    • 6
  • F. Schuller
    • 6
    • 7
  1. 1.Department of Radio Astronomy and GeodynamicsCrimean Astrophysical ObservatoryKatsivelliRussia
  2. 2.Institute of Applied AstronomyRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Astro Space Center, Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  4. 4.Hartebeesthoek Radio Astronomy ObservatoryKrugersdorpSouth Africa
  5. 5.Torun Centre for AstronomyNicolaus Copernicus University, PiwniceLysomicePoland
  6. 6.Max-Planck-Institut für RadioastronomieBonn (Endenich)Germany
  7. 7.Université Paris DiderotGif-sur-YvetteFrance

Personalised recommendations