Advertisement

Astronomy Reports

, Volume 62, Issue 12, pp 940–952 | Cite as

On the Final Gravitational Wave Burst from Binary Black Holes Mergers

  • J. F. Rodriguez
  • J. A. Rueda
  • R. Ruffini
Article
  • 11 Downloads

Abstract

We use perturbation theory in the strong-field regime to study the inspiral-to-plunge transition of a test particle into a Kerr black hole. We found a smooth transition, without burst, and with lower energy and angular momentum radiated in gravitational waves with respect to previous treatments in the literature. Besides their theoretical interest, our results are relevant for the waveform templates of binary black hole mergers used for gravitational waves detection which are constructed on the basis of a inspiral-to-plunge transition with a high energetic burst.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Schmidt, Nature (London, U.K.) 197, 1040 (1963).ADSCrossRefGoogle Scholar
  2. 2.
    A. Hewish, S. J. Bell, J. D. H. Pilkington, P. F. Scott, and R. A. Collins, Nature (London, U.K.) 217, 709 (1968).ADSCrossRefGoogle Scholar
  3. 3.
    R. Giacconi, S. Murray, H. Gursky, E. Kellogg, E. Schreier, and H. Tananbaum, Astrophys. J. 178, 281 (1972).ADSCrossRefGoogle Scholar
  4. 4.
    R. W. Leach and R. Ruffini, Astrophys. J. 180, L15 (1973).Google Scholar
  5. 5.
    Physics and Astrophysics of Neutron Stars and Black Holes, Proceedings of the International School of Physics Enrico Fermi, Varenna, Italy, Ed. by R. Giacconi and R. Ruffini (North-Holland, Amsterdam, New York, 1978).Google Scholar
  6. 6.
    R. A. Hulse and J. H. Taylor, Astrophys. J. 195, L51 (1975).Google Scholar
  7. 7.
    J. M. Weisberg and J. H. Taylor, in Binary Radio Pulsars, Ed. by F. A. Rasio and I. H. Stairs, ASP Conf. Ser. 328, 25 (2005); astro-ph/0407149.ADSGoogle Scholar
  8. 8.
    Neutron Stars, Black Holes and Binary X-Ray Sources, Proceedings of the Annual Meeting, San Francisco, CA, Feb. 28, 1974, Ed. by H. Gursky and R. Ruffini, Astrophys. Space Sci. Lib. 48 (1975).Google Scholar
  9. 9.
    B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, et al., Phys. Rev. Lett. 116, 061102 (2016); arXiv: 1602.03837.ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, et al., Phys. Rev. Lett. 116, 241103 (2016); arXiv: 1606.04855.ADSCrossRefGoogle Scholar
  11. 11.
    B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X.Adhikari,V. B. Adya, et al., Phys.Rev. Lett. 118, 221101 (2017); arXiv: 1706.01812.ADSCrossRefGoogle Scholar
  12. 12.
    R. Ruffini and J. A. Wheeler, ESRO, SP 52, 45 (1969).Google Scholar
  13. 13.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).Google Scholar
  14. 14.
    http://www.black-holes.org/waveforms.Google Scholar
  15. 15.
    J. F. Rodríguez, J. A. Rueda, and R. Ruffini, J. Cosmol.Astropart. Phys. 2, 030 (2018); arXiv: 1706.07704.ADSCrossRefGoogle Scholar
  16. 16.
    A. Ori and K. S. Thorne, Phys. Rev. D 62, 124022 (2000); gr-qc/0003032.ADSCrossRefGoogle Scholar
  17. 17.
    A. Buonanno and T. Damour, Phys. Rev. D 59, 084006 (1999); gr-qc/9811091.ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    A. Buonanno and T. Damour, Phys. Rev. D 62, 064015 (2000); gr-qc/0001013.ADSCrossRefGoogle Scholar
  19. 19.
    R. Ruffini and J. A. Wheeler, in Proceedings of the Cortona Symposium on Weak Interactions, Ed. by L. Radicati (Accad. Nazionale dei Lincei, Rome, 1971).Google Scholar
  20. 20.
    M. Rees, R. Ruffini, and J. A. Wheeler, Black Holes, Gravitational Waves and Cosmology (Gordon and Breach Science, New York, 1974).zbMATHGoogle Scholar
  21. 21.
    F. J. Zerilli, Phys. Rev. Lett. 24, 737 (1970).ADSCrossRefGoogle Scholar
  22. 22.
    F. J. Zerilli, Phys. Rev. D 2, 2141 (1970).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063 (1957).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    M. Davis, R. Ruffini, W. H. Press, and R. H. Price, Phys. Rev. Lett. 27, 1466 (1971).ADSCrossRefGoogle Scholar
  25. 25.
    M. Davis, R. Ruffini, and J. Tiomno, Phys. Rev. D 5, 2932 (1972).ADSCrossRefGoogle Scholar
  26. 26.
    R. Ruffini, Phys. Rev. D 7, 972 (1973).ADSCrossRefGoogle Scholar
  27. 27.
    R. Ruffini and M. Sasaki, Prog. Theor. Phys. 66, 1627 (1981).ADSCrossRefGoogle Scholar
  28. 28.
    E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).ADSCrossRefGoogle Scholar
  29. 29.
    R. H. Price, Phys. Rev. D 5, 2419 (1972).ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    S. A. Teukolsky, Astrophys. J. 185, 635 (1973).ADSCrossRefGoogle Scholar
  31. 31.
    S. L. Detweiler and E. Szedenits, Jr., Astrophys. J. 231, 211 (1979).ADSCrossRefGoogle Scholar
  32. 32.
    M. Sasaki and T. Nakamura, Phys. Lett. A 89, 68 (1982).ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    M. Sasaki and T. Nakamura, Prog. Theor. Phys. 67, 1788 (1982).ADSCrossRefGoogle Scholar
  34. 34.
    Y. Kojima and T. Nakamura, Prog. Theor. Phys. 71, 79 (1984).ADSCrossRefGoogle Scholar
  35. 35.
    J. Weber, Phys. Rev. Lett. 22, 1320 (1969).ADSCrossRefGoogle Scholar
  36. 36.
    C.W. Misner, Phys. Rev. Lett. 28, 994 (1972).ADSCrossRefGoogle Scholar
  37. 37.
    C. W. Misner, R. A. Breuer, D. R. Brill, P. L. Chrzanowski, H. G. Hughes, and C. M. Pereira, Phys. Rev. Lett. 28, 998 (1972).ADSCrossRefGoogle Scholar
  38. 38.
    M. Davis, R. Ruffini, J. Tiomno, and F. Zerilli, Phys. Rev. Lett. 28, 1352 (1972).ADSCrossRefGoogle Scholar
  39. 39.
    C. Cutler, L. S. Finn, E. Poisson, and G. J. Sussman, Phys. Rev. D 47, 1511 (1993).ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    T. Damour, B. R. Iyer, and A. Nagar, Phys. Rev. D 79, 064004 (2009), 0811.2069.ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    T. Tanaka, M. Shibata, M. Sasaki, H. Tagoshi, and T. Nakamura, Prog. Theor. Phys. 90, 65 (1993).ADSCrossRefGoogle Scholar
  42. 42.
    S. L. Detweiler, Astrophys. J. 225, 687 (1978).ADSCrossRefGoogle Scholar
  43. 43.
    M. Shibata, Phys. Rev. D 48, 663 (1993).ADSCrossRefGoogle Scholar
  44. 44.
    M. Shibata, Prog. Theor. Phys. 90, 595 (1993).ADSCrossRefGoogle Scholar
  45. 45.
    S. A. Hughes, Phys. Rev. D 64, 064004 (2001); grqc/0104041.ADSCrossRefGoogle Scholar
  46. 46.
    S. Drasco and S. A. Hughes, Phys.Rev.D73, 024027 (2006); gr-qc/0509101.Google Scholar
  47. 47.
    J. M. Bardeen, W. H. Press, and S. A. Teukolsky, Astrophys. J. 178, 347 (1972).ADSCrossRefGoogle Scholar
  48. 48.
    S. A. Teukolsky, Phys. Rev. Lett. 29, 1114 (1972).ADSCrossRefGoogle Scholar
  49. 49.
    S. A. Teukolsky and W. H. Press, Astrophys. J. 193, 443 (1974).ADSCrossRefGoogle Scholar
  50. 50.
    S. A. Hughes, Phys. Rev. D 61, 084004 (2000); grqc/9910091.ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    S. E. Gralla, S. A. Hughes, and N. Warburton, Class. Quantum Grav. 33, 155002 (2016); arXiv: 1603.01221.ADSCrossRefGoogle Scholar
  52. 52.
    R. T. Jantzen, P. Carini, and D. Bini, Ann. Phys. 215, 1 (1992), gr-qc/0106043.ADSCrossRefGoogle Scholar
  53. 53.
    E. Poisson, A. Pound, and I. Vega, Living Rev. Relativ. 14, 7 (2011); arXiv: 1102.0529.ADSCrossRefGoogle Scholar
  54. 54.
    M. J. Fitchett and S. Detweiler, Mon. Not. R. Astron. Soc. 211, 933 (1984).ADSCrossRefGoogle Scholar
  55. 55.
    L.S. Finn and K. S. Thorne, Phys.Rev. D 62, 124021 (2000); gr-qc/0007074.ADSCrossRefGoogle Scholar
  56. 56.
    T. Damour, Phys. Rev. D 64, 124013 (2001); grqc/0103018.ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    W.-B. Han and Z. Cao, Phys. Rev. D 84, 044014 (2011); arXiv: 1108.0995.ADSCrossRefGoogle Scholar
  58. 58.
    A. Pound and E. Poisson, Phys. Rev. D 77, 044013 (2008); arXiv: 0708.3033.ADSCrossRefGoogle Scholar
  59. 59.
    J. R. Gair, É. É. Flanagan, S. Drasco, T. Hinderer, and S. Babak, Phys. Rev. D 83, 044037 (2011); arXiv: 1012.5111.ADSCrossRefGoogle Scholar
  60. 60.
    A. Taracchini, A. Buonanno, G. Khanna, and S. A. Hughes, Phys. Rev.D 90, 084025 (2014); arXiv: 1404.1819.ADSCrossRefGoogle Scholar
  61. 61.
    C. Cutler, D. Kennefick, and E. Poisson, Phys. Rev. D 50, 3816 (1994).ADSCrossRefGoogle Scholar
  62. 62.
    R. Ruffini, in Black Holes (Les Astres Occlus), Ed. by C. Dewitt and B. S. Dewitt (Gordon and Breach, New York, 1973), p. 451.Google Scholar
  63. 63.
    H. Liu, J. Creswell, S. von Hausegger, A. D. Jackson, and P. Naselsky, J. Cosmol. Astropart. Phys. 2, 013 (2018); arXiv: 1802.00340.ADSCrossRefGoogle Scholar
  64. 64.
    P. Naselsky, A. D. Jackson, and H. Liu, J. Cosmol. Astropart. Phys. 8, 029 (2016); arXiv: 1604.06211.ADSCrossRefGoogle Scholar
  65. 65.
    H. Liu and A. D. Jackson, J. Cosmol. Astropart. Phys. 10, 014 (2016); arXiv: 1609.08346.ADSCrossRefGoogle Scholar
  66. 66.
    J. Creswell, S. von Hausegger, A. D. Jackson, H. Liu, and P. Naselsky, J. Cosmol. Astropart. Phys. 8, 013 (2017); arXiv: 1706.04191.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.ICRANetPescaraItaly

Personalised recommendations