Astronomy Reports

, Volume 62, Issue 12, pp 953–958 | Cite as

A Simple Method of Constructing Binary Black Hole Initial Data

  • I. RáczEmail author


By applying a parabolic–hyperbolic formulation of the constraints and superposing Kerr–Schild black holes, a simple method is introduced to initialize time evolution of binary systems. As the input parameters are essentially the same as those used in the post-Newtonian (PN) setup the proposed method interrelates various physical expressions applied in PN and in fully relativistic formulations. The global ADMcharges are also determined by the input parameters, and no use of boundary conditions in the strong field regime is made.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Choquet-Bruhat, General Relativity and Einstein’s Equations (Oxford Univ. Press, Oxford, 2009).zbMATHGoogle Scholar
  2. 2.
    A. J. Lichnerowicz, Math. Pures Appl. 23, 39 (1944).Google Scholar
  3. 3.
    J.W. York, Phys. Rev. Lett. 28, 1082 (1972).ADSCrossRefGoogle Scholar
  4. 4.
    T. W. Baumgarte and S. L. Shapiro, Numerical Relativity (Cambridge Univ. Press, Cambridge, 2010).CrossRefzbMATHGoogle Scholar
  5. 5.
    I. Rácz, Class. Quantum Grav. 33, 015014 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    I. Rácz and J. Winicour, Phys. Rev. D 91, 124013 (2015).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    I. Rácz, arXiv:1608.02283 (2016).Google Scholar
  8. 8.
    E. Bonning, P. Marronetti, D. Neilson, and R.A. Matzner, Phys. Rev. D. 68, 044019 (2003).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    G. Lovelace, R. Owen, H. P. Pfeiffer, and T. Chu, Phys. Rev. D 78, 084017 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    S. Ossokine, F. Foucart, H. P. Pfeiffer, M. Boyle, and B. Szilágyi, Class. Quantum Grav. 32, 245010 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    J. Thornburg, Class. Quantum Grav. 4, 1119 (1987).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    T. Chu, Phys. Rev. D 89, 064062 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    G. Lovelace, Class. Quantum Grav. 26, 114002 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    R. P. Kerr and A. Schild, Proc. Symp. Appl.Math. 17, 199 (1965).CrossRefGoogle Scholar
  15. 15.
    H.-O. Kreiss and J. Lorenz, Initial-Boundary Value Problems and the Navier–Stokes Equations (Academic, Boston, 1989).zbMATHGoogle Scholar
  16. 16.
    J. M. Bowen and J. W. York, Phys. Rev. D 21, 2047 (1980).ADSCrossRefGoogle Scholar
  17. 17.
    A. Garat and R. H. Price, Phys. Rev. D 61, 124011 (2000).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    J. A. V. Kroon, Class. Quantum Grav. 21, 3237 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    P. T. Chrusćiel, J. Corvino, and J. Isenberg, Commun. Math. Phys. 304, 637 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of WarsawWarsawPoland
  2. 2.Wigner Research Centre for PhysicsBudapestHungary

Personalised recommendations