Astronomy Reports

, Volume 62, Issue 5, pp 326–345 | Cite as

The Spatial–Kinematic Structure of the Region of Massive Star Formation S255N on Various Scales

  • P. M. Zemlyanukha
  • I. I. Zinchenko
  • S. V. Salii
  • O. L. Ryabukhina
  • S.-Y. Liu


The results of a detailed analysis of SMA, VLA, and IRAM observations of the region of massive star formation S255N in CO(2–1), N2H+(3–2), NH3(1, 1), C18O(2–1) and some other lines is presented. Combining interferometer and single-dish data has enabled a more detailed investigation of the gas kinematics in the moleclar core on various spatial scales. There are no signs of rotation or isotropic compression on the scale of the region as whole. The largest fragments of gas (≈0.3 pc) are located near the boundary of the regions of ionized hydrogen S255 and S257. Some smaller-scale fragments are associated with protostellar clumps. The kinetic temperatures of these fragments lie in the range 10–80 K. A circumstellar torus with inner radius Rin ≈ 8000 AU and outer radius Rout ≈ 12 000 AU has been detected around the clump SMA1. The rotation profile indicates the existence of a central object with mass ≈8.5/ sin2(i) M. SMA1 is resolved into two clumps, SMA1–NE and SMA1–SE, whose temperatures are≈150Kand≈25 K, respectively. To all appearances, the torus is involved in the accretion of surrounding gas onto the two protostellar clumps.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Mapelli, Mon. Not. R. Astron. Soc. 467, 3255 (2017); arXiv: 1702.00415.ADSCrossRefGoogle Scholar
  2. 2.
    V. Sokolov, K. Wang, J. E. Pineda, P. Caselli, J. D. Henshaw, J. C. Tan, F. Fontani, I. Jiménez-Serra, and W. Lim, Astron. Astrophys. 606, A133 (2017); arXiv: 1706.08903.ADSCrossRefGoogle Scholar
  3. 3.
    K. J. Richardson, G. J. White, G. Gee, M. J. Griffin, C. T. Cunningham, P. A. R. Ade, and L. W. Avery, Mon. Not. R. Astron. Soc. 216, 713 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    L. Pirogov, I. Zinchenko, P. Caselli, L. E. B. Johansson, and P. C. Myers, Astron. Astrophys. 405, 639 (2003); astro-ph/0304469.ADSCrossRefGoogle Scholar
  5. 5.
    J. H. Bieging, W. L. Peters, B. V. Vilaro, K. Schlottman, and C. Kulesa, in IAU Symp. 237: Triggered Star Formation in a Turbulent ISM, Ed. by B. G. Elmegreen and J. Palous (Cambridge University Press, Cambridge, 2007), p. 396.Google Scholar
  6. 6.
    Y.Wang, H. Beuther, A. Bik, T. Vasyunina, Z. Jiang, E. Puga, H. Linz, J. A. Rodón, T. Henning, and M. Tamura, Astron. Astrophys. 527, A32 (2011); arXiv: 1011.3575.CrossRefGoogle Scholar
  7. 7.
    D. K. Ojha, M. R. Samal, A. K. Pandey, B. C. Bhatt, S. K. Ghosh, S. Sharma, M. Tamura, V. Mohan, and I. Zinchenko, Astrophys. J. 738, 156 (2011); arXiv: 1106.1858.ADSCrossRefGoogle Scholar
  8. 8.
    I. Zinchenko, S.-Y. Liu, Y.-N. Su, S. Kurtz, D. K. Ojha, M. R. Samal, and S. K. Ghosh, Astrophys. J. 755, 177 (2012); arXiv: 1206.5906.ADSCrossRefGoogle Scholar
  9. 9.
    S. Kurtz, P. Hofner, and C. V. Álvarez, Astrophys. J. 155, 149 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    I. Zinchenko, P. Caselli, and L. Pirogov, Mon. Not. R. Astron. Soc. 395, 2234 (2009); arXiv: 0903.1209.ADSCrossRefGoogle Scholar
  11. 11.
    V. Minier, N. Peretto, S. N. Longmore, M. G. Burton, R. Cesaroni, C. Goddi, M. R. Pestalozzi, and P. André, in IAU Symp. 237: Triggered Star Formation in a Turbulent ISM, Ed. by B.G. Elmegreen and J. Palous (Cambridge University Press, Cambridge, 2007), p. 160.Google Scholar
  12. 12.
    S. Kurtz, E. Churchwell, and D. O. S. Wood, Astrophys. J. 91, 659 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    C. J. Cyganowski, C. L. Brogan, and T. R. Hunter, Astron. J. 134, 346 (2007); arXiv: 0704.0988.ADSCrossRefGoogle Scholar
  14. 14.
    R. A. Burns, T. Handa, T. Nagayama, K. Sunada, and T. Omodaka, Mon. Not. R. Astron. Soc. 460, 283 (2016); arXiv: 1604.05682.ADSCrossRefGoogle Scholar
  15. 15.
    R. J. Sault, P. J. Teuben, and M. C. H. Wright, in Astronomical Data Analysis Software and Systems IV, Ed. by R. A. Shaw, H. E. Payne, and J. J. E. Hayes, ASP Conf. Ser. 77, 433 (1995); astroph/0612759.ADSGoogle Scholar
  16. 16.
    F. R. Schwab, Astron. J. 89, 1076 (1984).ADSCrossRefGoogle Scholar
  17. 17.
    H. S. P. Müller, F. Schlöder, J. Stutzki, and G. Winnewisser, J. Mol. Struct. 742, 215 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    K. H. Knuth, arXiv:physics/0605197 (2006).Google Scholar
  19. 19.
    J. D. Scargle, J. P. Norris, B. Jackson, and J. Chiang, Astrophys. J. 764, 167 (2013); arXiv: 1207.5578.ADSCrossRefGoogle Scholar
  20. 20.
    Astropy Collaboration, T. P. Robitaille, E. J. Tollerud, P. Greenfield, M. Droettboom, E. Bray, T. Aldcroft, M. Davis, A. Ginsburg, A. M. Price-Whelan, et al., Astron. Astrophys. 558, A33 (2013).CrossRefGoogle Scholar
  21. 21.
    N. S. Altman, Am. Stat. 46, 175 (1992); /10.1080/00031305.1992.10475879.Google Scholar
  22. 22.
    S. V. Salii, in Star Formation in the Galaxy and Beyond, Proceedings of the Conference, Moscow, Apr. 17–18, 2006, Ed. by D.Z. Wiebe and M.S. Kirsanova, M.: Janus-K, p. 146.Google Scholar
  23. 23.
    D. M. Cragg, A. M. Sobolev, and P. D. Godfrey, Mon. Not. R. Astron. Soc. 360, 533 (2005), astroph/0504194.ADSCrossRefGoogle Scholar
  24. 24.
    M. P. Miralles, L. Salas, I. Cruz-González, and S. Kurtz, Astrophys. J. 488, 749 (1997).ADSCrossRefGoogle Scholar
  25. 25.
    L. A. Chavarria, L. E. Allen, J. L. Hora, C. M. Brunt, and G.G. Fazio, Astrophys. J. 682, 445 (2008); arXiv: 0803.3358.ADSCrossRefGoogle Scholar
  26. 26.
    A. E. Higuchi, T. Hasegawa, K. Saigo, P. Sanhueza, and J. O. Chibueze, Astrophys. J. 815, 106 (2015); arXiv: 1511.02955.ADSCrossRefGoogle Scholar
  27. 27.
    M. T. Beltrán, Á. Sánchez-Monge, R. Cesaroni, M. S. N. Kumar, D. Galli, C. M. Walmsley, S. Etoka, R. S. Furuya, L. Moscadelli, T. Stanke, et al., Astron. Astrophys. 571, A52 (2014).ADSCrossRefGoogle Scholar
  28. 28.
    N.Ohashi,M. Hayashi, P. T. P. Ho, and M. Momose, Astrophys. J. 475, 211 (1997).ADSCrossRefGoogle Scholar
  29. 29.
    I. E. Val’tts, Astron. Lett. 24, 788 (1998).ADSGoogle Scholar
  30. 30.
    T. R. Hunter, C. L. Brogan, C. J. Cyganowski, and K. H. Young, Astrophys. J. 788, 187 (2014), 1405.0496.ADSCrossRefGoogle Scholar
  31. 31.
    T. Yanagida, T. Sakai, T. Hirota, N. Sakai, J. B. Foster, P. Sanhueza, J. M. Jackson, K. Furuya, Y. Aikawa, and S. Yamamoto, Astrophys. J. Lett. 794, L10 (2014). 8205/794/i=1/a=L10.ADSCrossRefGoogle Scholar
  32. 32.
    N. L. Martin Hernandez, A. Bik, E. Puga, D. E. A. Nürnberger, and L. Bronfman, Astron. Astrophys. 489, 229 (2008); arXiv: 0807.5099.ADSCrossRefGoogle Scholar
  33. 33.
    K. Rohlfs and T. L. Wilson, Tools of Radio Astronomy (Springer, Berlin, Heidelberg, 2004).CrossRefGoogle Scholar
  34. 34.
    M. A. Frerking, W. D. Langer, and R. W. Wilson, Astrophys. J. 262, 590 (1982).ADSCrossRefGoogle Scholar
  35. 35.
    H. Beuther, A. J. Walsh, K. G. Johnston, T. Henning, R. Kuiper, S. N. Longmore, and C.M. Walmsley, Astron. Astrophys. 603, A10 (2017); arXiv: 1703.07235.ADSCrossRefGoogle Scholar
  36. 36.
    I. Zinchenko, S.-Y. Liu, Y.-N. Su, S. V. Salii, A. M. Sobolev, P. Zemlyanukha, H. Beuther, D. K. Ojha, M. R. Samal, and Y. Wang, Astrophys. J. 810, 10 (2015); arXiv: 1507.05642.ADSCrossRefGoogle Scholar
  37. 37.
    M. T. Beltrán and W. J. deWit, Astron. Astrophys. 24, 6 (2016); arXiv: 1509.08335.ADSGoogle Scholar
  38. 38.
    S. P. Quanz, H. Beuther, J. Steinacker, H. Linz, S. M. Birkmann, O. Krause, T. Henning, and Q. Zhang, Astrophys. J. 717, 693 (2010); arXiv: 1005.1652.ADSCrossRefGoogle Scholar
  39. 39.
    R. Chini, V. H. Hoffmeister, M. Nielbock, C. M. Scheyda, J. Steinacker, R. Siebenmorgen, and D. Nürnberger, Astrophys. J. 645, L61 (2006).ADSCrossRefGoogle Scholar
  40. 40.
    S. Sako, T. Yamashita, H. Kataza, T. Miyata, Y. K. Okamoto, M. Honda, T. Fujiyoshi, H. Terada, T. Kamazaki, Z. Jiang, et al., Nature (London, U.K.) 434, 995 (2005).ADSCrossRefGoogle Scholar
  41. 41.
    P. A. Boley, H. Linz, R. van Boekel, T. Henning, M. Feldt, L. Kaper, C. Leinert, A. Müller, I. Pascucci, M. Robberto, et al., Astron. Astrophys. 558, A24 (2013); arXiv: 1308.4282.CrossRefGoogle Scholar
  42. 42.
    P. K. Sollins, Q. Zhang, E. Keto, and P. T. P. Ho, Astrophys. J. 631, 399 (2005); arXiv: astroph/0506059.ADSCrossRefGoogle Scholar
  43. 43.
    M. T. Beltrán, R. Cesaroni, R. Neri, and C. Codella, Astron. Astrophys. 525, A151 (2011); arXiv: 1010.0843.ADSCrossRefGoogle Scholar
  44. 44.
    M. T. Beltrán, R. Cesaroni, Q. Zhang, R. Galván-Madrid, H. Beuther, C. Fallscheer, R. Neri, and C. Codella, Astron. Astrophys. 532, A91 (2011); arXiv: 1107.0314.ADSCrossRefGoogle Scholar
  45. 45.
    R. Cesaroni, D. Galli, G. Lodato, C. M. Walmsley, and Q. Zhang, in Protostars and Planets V (2007), p. 197; astro-ph/0603093.Google Scholar
  46. 46.
    K. M. Kratter, C. D. Matzner, M. R. Krumholz, and R. I. Klein, Astrophys. J. 708, 1585 (2010), 0907.3476.ADSCrossRefGoogle Scholar
  47. 47.
    S. A. Balbus and J. F. Hawley, Rev. Mod. Phys. 70, 1 (1998).ADSCrossRefGoogle Scholar
  48. 48.
    M. R. Krumholz, R. I. Klein, C. F. McKee, S. S. R. Offner, and A. J. Cunningham, Science (Washington, DC, U.S.) 323, 754 (2009); arXiv: 0901.3157.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. M. Zemlyanukha
    • 1
  • I. I. Zinchenko
    • 1
    • 2
  • S. V. Salii
    • 3
  • O. L. Ryabukhina
    • 1
    • 2
  • S.-Y. Liu
    • 4
  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia
  2. 2.Lobachevsky State UniversityNizhny NovgorodRussia
  3. 3.B.N. Yeltsin Ural Federal UniversityYekaterinburgRussia
  4. 4.Institute of Astronomy and AstrophysicsAcademia SinicaTaipeiTaiwan

Personalised recommendations