Astronomy Reports

, Volume 61, Issue 2, pp 153–159 | Cite as

Results of tracking a spacecraft in the vicinity of the L2 libration point of the Sun–Earth system

  • I. V. KorobtsevEmail author
  • V. E. Goryashin
  • M. V. Eselevich


The launch of the Spektrum-Roentgen-Gamma (SRG) international orbiting astrophysical observatory is planned for the near future. It is planned tomaneuver SRGinto the vicinity of the L2 libration point of the Sun–Earth system, where it will be kept in a quasi-stable orbit. The spacecraft orbit must be maintained in order to carry out the scientific program of the project, which requires obtaining information about the current parameters of its motion. With the aim of developing methods for making optical measurements and estimating the required volume of measurement data and their accuracy, observations of the Gaia spacecraft, which is located in the vicinity of L2, were made at the Sayan Observatory in 2014–2015. The results of observations of the Gaia spacecraft on the 1.6-m infrared telescope of the Sayan Observatory are presented. The measured brightness of the spacecraft was 20.7–22m, which is close to the limiting magnitude of the telescope. The accuracy of these astrometric measurements was about one arcsecond. Possibilities for obtaining accurate astrometric data for the SRG spacecraft in orbit in the vicinity of L2 are discussed, as well as the required observing conditions and the volume of measurement data required for adequate prediction of the spacecraft motion.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. S. Il’in, G. S. Zaslavskii, S. M. Lavrenov, V. S. Sazonov, V. A. Stepan’yants, A. G. Tuchin, D. A. Tuchin, and V. S. Yaroshevsky, Cosmic Res. 52, 437 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    S. I. Shmatov and A. S. Mordvinkin, Vestn. FGUP NPO Lavochkina 5, 21 (2013).Google Scholar
  3. 3.
    F. Budnik, M. Croon, and T. Morley, in Proceedings of the 23 International Symposium on Space Flight Dynamics, Pasadena, USA, Oct. 29–Nov. 2, 2012.Google Scholar
  4. 4.
    A. V. Didenko and L. A. Usol’tseva, Izv. NAN RK, Ser. Fiz.-Mat. 4, 96 (2008).Google Scholar
  5. 5.
    G. A. McCue, J. G. Williams, and J. M. Morford, Planet. Space Sci. 19, 851 (1971).ADSCrossRefGoogle Scholar
  6. 6.
    M. Altmann, S. Bouquillon, F. Taris, I. A. Steele, R. L. Smart, A. H. Andrei, C. Barache, T. Carlucci, and S. G. Elsa, Proc.SPIE9149, id. 91490P (2014).Google Scholar
  7. 7.
    L. Lindegren and M. A. C. Perryman, Astron. Astrophys. Suppl. Ser. 116, 579 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    S. B. Howell, Handbook of CCD Astronomy (Cambridge Univ. Press, Cambridge, 2006), p.77.CrossRefGoogle Scholar
  9. 9.
    A. B. Devyatkin, D. L. Gorshanov, V. V. Kupriyanov, and I. A. Vereshchagina, Astron. vestn. 44, 74 (2010).Google Scholar
  10. 10.
    D. G. Monet, S. E. Levine, B. Canzian, H. D. Ables, A. R. Bird, C. C. Dahn, H. H. Guetter, H. C. Harris, A. A. Henden, S. K. Leggett, H. F. Levison, C. B. Luginbuhl, J. Martini, A. K. B. Monet, J. A. Munn, et al., Astron. J. 125, 984 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    V. K. Abalakin, E. P. Aksenov, E. A. Grebenikov, V. G. Demin, and Yu. A. Ryabov, Manual on Celestial Mechanics and Astrodynamics, 2nd ed. (Nauka, Moscow, 1976), p. 273 [in Russian].Google Scholar
  12. 12.
    E. Everhart, Celest. Mech. 10, 35 (1974).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    T. V. Bordovitsyna and V. A. Avdyushev, Theory for Artificial Earth Satellite Motion. Analytical and Numerical Methods (Tomsk. Univ., Tomsk, 2007) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. V. Korobtsev
    • 1
    Email author
  • V. E. Goryashin
    • 1
  • M. V. Eselevich
    • 1
  1. 1.Institute of Solar–Terrestrial Physics, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations