Astronomy Reports

, Volume 60, Issue 4, pp 425–437 | Cite as

The scale factor in a Universe with dark energy

Article

Abstract

The solution of the Friedmann cosmological equations for the scale factor in a model of the Universe containing matter having the equation of state of dust and dark energy is considered. The equation-of-state parameter of the dark energy is taken to be an arbitrary constant w = −1.006 ± 0.045, whose value is constrained by the current observational limits. An exact solution for the scale factor as a function of physical time and conformal time is obtained. Approximate solutions have been found for the entire admissible conformal time interval with an accuracy better than 1%, which exceeds the accuracy of the determined global parameters of our Universe. This is the first time an exact solution for the scale factor describing the evolution of the Universe in a unified way, beginning with the matter-dominated epoch and ending with the infinitely remote future, has been obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, et al., Astron. J. 116, 1009 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    A. G. Riess, A. V. Filippenko, M. C. Liu, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, C. J. Hogan, S. Jha, K. R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, et al., Astrophys. J. 536, 62 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    V. Sahni and A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000).ADSGoogle Scholar
  4. 4.
    T. Padmanabhan, Phys. Rep. 380, 235 (2003).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    V. Sahni, Lect. Notes Phys. 653, 141 (2004).ADSGoogle Scholar
  6. 6.
    E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    V. Sahni and A. Starobinsky, Int. J. Mod. Phys. D 15, 2105 (2006).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Frieman, M. Turner, and D. Huterer, Ann. Rev. Astron. Astrophys. 46, 385 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    V. Gorini, U. Moschella, A. Kamenshchik, and V. Pasquier, ASP Conf. Ser. 751, 108 (2005).Google Scholar
  10. 10.
    P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, N. Bartolo, E. Battaner, R. Battye, K. Benabed, A. Benoit, A. Benoit-Levy, et al., arXiv:1502. 01589 [astro-ph. CO] (2015).Google Scholar
  11. 11.
    P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, E. Battaner, K. Benabed, A. Benoit, A. Benoit-Levy, et al., Astron. Astrophys. 571, A16 (2014).CrossRefGoogle Scholar
  12. 12.
    E. Komatsu, J. Dunkley, M. R. Nolta, C. L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. Limon, L. Page, D. N. Spergel, M. Halpern, R. S. Hill, A. Kogut, S. S. Meyer, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, Astrophys. J. Suppl. 180, 330 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    V. Sahni, A. Shafieloo, and A. A. Starobinsky, Phys. Rev. D 78, id. 103502 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    J.-Q. Xia, H. Li, G.-B. Zhao, and X. Zhang, Phys. Rev. D 78, id. 083524 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    R. R. Caldwell, Phys. Lett. B 545, 23 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    D. S. Gorbunov and V. A. Rubakov, Introduction to the Theory of the Early Universe (URSS, Moscow, 2008) [in Russian].MATHGoogle Scholar
  17. 17.
    E. Kolb and M. Turner, The Early Universe (Westview Press, 1994).Google Scholar
  18. 18.
    I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products (Fizmatlit, Moscow, 1963; Academic, New York, 1980).MATHGoogle Scholar
  19. 19.
    G. Bateman and A. Erdeii, Higher Transcendental Functions (McGraw-Hill, New York, 1953; Fizmatgiz, Moscow, 1967).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Sternberg Astronomical InstituteLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations