Astronomy Reports

, Volume 59, Issue 7, pp 645–655 | Cite as

Wind accretion: Theory and observations

  • N. I. Shakura
  • K. A. Postnov
  • A. Yu. Kochetkova
  • L. Hjalmarsdotter
  • L. Sidoli
  • A. Paizis
Article

Abstract

A review of wind accretion in high-mass X-ray binaries is presented. We focus on different regimes of quasi-spherical accretion onto the neutron star (NS): the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically towards the NS magnetosphere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. These two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg s-1. In the subsonic case, which sets in at lower luminosities, a hot quasi-spherical shell must form around the magnetosphere, and the actual accretion rate onto NS is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh–Taylor instability. In turn, two regimes of subsonic accretion are possible, depending on plasma cooling mechanism (Compton or radiative) near the magnetopshere. The transition from the high-luminosity with Compton cooling to the lowluminosity (Lx ≲ 3 × 1035 erg s-1) with radiative cooling can be responsible for the onset of the off states repeatedly observed in several low-luminosity slowly accreting pulsars, such as Vela X-1, GX 301-2, and 4U 1907+09. The triggering of the transitionmay be due to a switch in the X-ray beam pattern in response to a change in the optical depth in the accretion column with changing luminosity. We also show that in the settling accretion theory, bright X-ray flares (~1038-1040 erg) observed in supergiant fast X-ray transients (SFXT) can be produced by sporadic capture of magnetized stellar wind plasma. At sufficiently low accretion rates, magnetic reconnection can enhance the magnetospheric plasma entry rate, resulting in copious production of X-ray photons, strong Compton cooling and ultimately in unstable accretion of the entire shell. A bright flare develops on the free-fall time scale in the shell, and the typical energy released in an SFXT bright flare corresponds to the mass of the shell.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Giacconi, H. Gursky, F. R. Paolini, and B. B. Rossi, Phys. Rev. Lett. 9, 439 (1962).ADSCrossRefGoogle Scholar
  2. 2.
    R. Giacconi, Rev.Mod. Phys. 75, 995 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    Y. B. Zeldovich and N. I. Shakura, Sov. Astron. 13, 175 (1969).ADSGoogle Scholar
  4. 4.
    R. Giacconi, H. Gursky, E. Kellogg, E. Schreier, and H. Tananbaum, Astrophys. J. Lett. 167, L67 (1971).ADSCrossRefGoogle Scholar
  5. 5.
    X- and Gamma-Ray Astronomy, Proceedings of 55th IAU Symposium, Madrid, Spain, 11–13 May, 1972, Ed. by H. Bradt and R. Giacconi, IAU Symp., vol. 55 (1973).Google Scholar
  6. 6.
    A. Hewish, S. J. Bell, J.D.H. Pilkington, P. F. Scott, and R. A. Collins, Nature (London) 217, 709 (1968).ADSCrossRefGoogle Scholar
  7. 7.
    T. Gold, Nature (London) 218, 731 (1968).ADSCrossRefGoogle Scholar
  8. 8.
    P. Goldreich and W. H. Julian, Astrophys. J. 157, 869 (1969).ADSCrossRefGoogle Scholar
  9. 9.
    N. I. Shakura, Sov. Astron. 16, 756 (1973).ADSGoogle Scholar
  10. 10.
    J. E. Pringle and M. J. Rees, Astron. Astrophys. 21, 1 (1972).ADSGoogle Scholar
  11. 11.
    N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).ADSGoogle Scholar
  12. 12.
    D. Lynden-Bell, Nature (London) 223, 690 (1969).ADSCrossRefGoogle Scholar
  13. 13.
    B. A. Fryxell and R. E. Taam, Astrophys. J. 335, 862 (1988).ADSCrossRefGoogle Scholar
  14. 14.
    M. Ruffert, Astron. Astrophys. 346, 861 (1999).ADSGoogle Scholar
  15. 15.
    T. Nagae, K. Oka, T. Matsuda, H. Fujiwara, I. Hachisu, and H. M. J. Boffin, Astron. Astrophys. 419, 335 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    J. Arons and S. M. Lea, Astrophys. J. 207, 914 (1976).ADSCrossRefGoogle Scholar
  17. 17.
    A. F. Illarionov and R. A. Sunyaev, Astron. Astrophys. 39, 185 (1975).ADSGoogle Scholar
  18. 18.
    D. J. Burnard, J. Arons, and S. M. Lea, Astrophys. J. 266, 175 (1983).ADSCrossRefGoogle Scholar
  19. 19.
    N. Shakura, K. Postnov, A. Kochetkova, and L. Hjalmarsdotter, Mon. Not. R. Astron. Soc. 420, 216 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    R. F. Elsner and F. K. Lamb, Astrophys. J. 215, 897 (1977).ADSCrossRefGoogle Scholar
  21. 21.
    N. I. Shakura, K. A. Postnov, A. Y. Kochetkova, and L. Hjalmarsdotter, Eur. Phys. J. Web of Conf. 64, 2001 (2014).CrossRefGoogle Scholar
  22. 22.
    H. Inoue, Y. Ogawara, I. Waki, T. Ohashi, S. Hayakawa, H. Kunieda, F. Nagase, and H. Tsunemi, Publ. Astron. Soc. Jpn. 36, 709 (1984).ADSGoogle Scholar
  23. 23.
    I. Kreykenbohm, P. Kretschmar, J. Wilms, R. Staubert, E. Kendziorra, D. E. Gruber, W. A. Heindl, and R. E. Rothschild, Astron. Astrophys. 341, 141 (1999).ADSGoogle Scholar
  24. 24.
    I. Kreykenbohm, J. Wilms, P. Kretschmar, J. M. Torrejon, K. Pottschmidt, M. Hanke, A. Santangelo, C. Ferrigno, and R. Staubert, Astron. Astrophys. 492, 511 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    V. Doroshenko, A. Santangelo, and V. Suleimanov, Astron. Astrophys. 529, A52 (2011).Google Scholar
  26. 26.
    E.Gogus,_I. Kreykenbohm, and T.M. Belloni, Astron. Astrophys. 525, L6 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    J. J. M. int Zand, T. E. Strohmayer, and A. Baykal, Astrophys. J. Lett. 479, L47 (1997).ADSCrossRefGoogle Scholar
  28. 28.
    S. S. ahiner, S. C. Inam, and A. Baykal, Mon. Not. R. Astron. Soc. 421, 2079 (2012).ADSCrossRefGoogle Scholar
  29. 29.
    F. Furst, I. Kreykenbohm, S. Suchy, L. Barragan, J. Wilms, R. E. Rothschild, and K. Pottschmidt, Astron. Astrophys. 525, A73 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    P. Kretschmar, I. Kreykenbohm, J. Wilms, R. Staubert, W. A. Heindl, D. E. Gruber, and R. E. Rothschild, in Proceedings of the 5th Compton Symposium, Ed. by M. L.McConnell and J. M. Ryan, AIP Conf. Ser. 510, 163 (2000).ADSCrossRefGoogle Scholar
  31. 31.
    D. Klochkov, R. Staubert, A. Santangelo, R. E. Rothschild, and C. Ferrigno, Astron.Astrophys. 532, A126 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    A. N. Parmar, N. E.White, and L. Stella, Astrophys. J. 338, 373 (1989).ADSCrossRefGoogle Scholar
  33. 33.
    F. K. Lamb, C. J. Pethick, and D. Pines, Astrophys. J. 184, 271 (1973).ADSCrossRefGoogle Scholar
  34. 34.
    N. Shakura, K. Postnov, and L. Hjalmarsdotter, Mon. Not. R. Astron. Soc. 428, 670 (2013).ADSCrossRefGoogle Scholar
  35. 35.
    L. Sidoli, P. Romano, S. Mereghetti, A. Paizis, S. Vercellone, V. Mangano, and D. Gotz, Astron. Astrophys. 476, 1307 (2007).ADSCrossRefGoogle Scholar
  36. 36.
    L. J. Pellizza, S. Chaty, and I. Negueruela, Astron. Astrophys. 455, 653 (2006).ADSCrossRefGoogle Scholar
  37. 37.
    S. Chaty, F. Rahoui, C. Foellmi, J. A. Tomsick, J. Rodriguez, and R. Walter, Astron. Astrophys. 484, 783 (2008).ADSCrossRefGoogle Scholar
  38. 38.
    F. Rahoui, S. Chaty, P.-O. Lagage, and E. Pantin, Astron. Astrophys. 484, 801 (2008).ADSCrossRefGoogle Scholar
  39. 39.
    S. Molkov, N. Mowlavi, A. Goldwurm, A. Strong, N. Lund, J. Paul, and T. Oosterbroek, Astron. Telegram 176, 1 (2003).ADSGoogle Scholar
  40. 40.
    R. A. Sunyaev, S. A. Grebenev, A. A. Lutovinov, J. Rodriguez, S. Mereghetti, D. Gotz, and T. Courvoisier, Astron. Telegram 190, 1 (2003).ADSGoogle Scholar
  41. 41.
    S. A. Grebenev, A. A. Lutovinov, and R. A. Sunyaev, Astron. Telegram 192, 1 (2003).ADSGoogle Scholar
  42. 42.
    V. Sguera, E. J. Barlow, A. J. Bird, D. J. Clark, A. J. Dean, A. B. Hill, L. Moran, S. E. Shaw, D. R. Willis, A. Bazzano, P. Ubertini, and A. Malizia, Astron. Astrophys. 444, 221 (2005).ADSCrossRefGoogle Scholar
  43. 43.
    I. Negueruela, D. M. Smith, P. Reig, S. Chaty, and J. M. Torrejon, in Proceedings of the X-Ray Universe 2005, Ed. by A. Wilson, ESA SP-604 (ESA PublicationsDivision,Noordwijk, 2006), Vol. 1, p. 165.Google Scholar
  44. 44.
    P. Romano, V. La Parola, S. Vercellone, G. Cusumano, L. Sidoli, H. A. Krimm, C. Pagani, P. Esposito, E. A. Hoversten, J. A. Kennea, K. L. Page, D. N. Burrows, and N. Gehrels, Mon. Not. R. Astron. Soc. 410, 1825 (2011).ADSGoogle Scholar
  45. 45.
    P. Romano, H. A. Krimm, D. M. Palmer, L. Ducci, P. Esposito, S. Vercellone, P. A. Evans, C. Guidorzi, V. Mangano, J. A. Kennea, S. D. Barthelmy, D. N. Burrows, and N. Gehrels, Astron. Astrophys. 562, A2 (2014).ADSCrossRefGoogle Scholar
  46. 46.
    L. Sidoli, in Proceedings of the 9th INTEGRAL Workshop (2012), id.11. http://pos.sissa.it/cgibin/ reader/conf.cgi?confid=176Google Scholar
  47. 47.
    S. A. Grebenev and R. A. Sunyaev, Astron. Lett. 33, 149 (2007).ADSCrossRefGoogle Scholar
  48. 48.
    E. Bozzo, M. Falanga, and L. Stella, Astrophys. J. 683, 1031 (2008).ADSCrossRefGoogle Scholar
  49. 49.
    J. J. M. in’t Zand, Astron. Astrophys. 441, L1 (2005).ADSCrossRefGoogle Scholar
  50. 50.
    R. Walter and J. Zurita Heras, Astron. Astrophys. 476, 335 (2007).ADSCrossRefGoogle Scholar
  51. 51.
    I. Negueruela, J. M. Torrejon, P. Reig, M. Ribo, and D. M. Smith, in A Population Explosion: The Nature and Evolution of X-Ray Binaries in Diverse Environments, Ed. by R. M. Bandyopadhyay, S. Wachter, D. Gelino, and C. R. Gelino, AIP Conf. Proc. 1010, 252 (2008).ADSGoogle Scholar
  52. 52.
    L. Ducci, L. Sidoli, S. Mereghetti, A. Paizis, and P. Romano, Mon. Not. R. Astron. Soc. 398, 2152 (2009).ADSCrossRefGoogle Scholar
  53. 53.
    L. M. Oskinova, A. Feldmeier, and P. Kretschmar, Mon. Not. R. Astron. Soc. 421, 2820 (2012).ADSCrossRefGoogle Scholar
  54. 54.
    N. Shakura, K. Postnov, L. Sidoli, and A. Paizis, Mon. Not. R. Astron. Soc. 442, 2325 (2014).ADSCrossRefGoogle Scholar
  55. 55.
    L. Sidoli, P. Romano, V. Mangano, A. Pellizzoni, J. A. Kennea, G. Cusumano, S. Vercellone, A. Paizis, D. N. Burrows, and N. Gehrels, Astrophys. J. 687, 1230 (2008).ADSCrossRefGoogle Scholar
  56. 56.
    A. Paizis and L. Sidoli, Mon. Not. R. Astron. Soc. 439, 3439 (2014).ADSCrossRefGoogle Scholar
  57. 57.
    R. Krivonos, S. Tsygankov, A. Lutovinov, M. Revnivtsev, E. Churazov, and R. Sunyaev, Astron. Astrophys. 545, A27 (2012).CrossRefGoogle Scholar
  58. 58.
    J. Braithwaite, arXiv e-prints (2013).Google Scholar
  59. 59.
    L. M. Zelenyi and A. V. Milovanov, Phys. Usp. 47, 1 (2004).ADSCrossRefGoogle Scholar
  60. 60.
    R. Bruno and V. Carbone, Living Rev. Solar Phys. 10, 2 (2013).ADSCrossRefGoogle Scholar
  61. 61.
    J. Puls, J. S. Vink, and F. Najarro, Astron. Astrophys. Rev. 16, 209 (2008).ADSCrossRefGoogle Scholar
  62. 62.
    J.W. Dungey, Phys. Rev. Lett. 6, 47 (1961).ADSCrossRefGoogle Scholar
  63. 63.
    H. J. G. L. M. Lamers, E. P. J. van den Heuvel, and J. A. Petterson, Astron. Astrophys. 49, 327 (1976).ADSGoogle Scholar
  64. 64.
    E. A. Vitrichenko, D. K. Nadyozhin, and T. L. Razinkova, Astron. Lett. 33, 251 (2007).ADSCrossRefGoogle Scholar
  65. 65.
    E. G. Zweibel and M. Yamada, Ann. Rev. Astron. Astrophys. 47, 291 (2009).ADSCrossRefGoogle Scholar
  66. 66.
    F. Furst, I. Kreykenbohm, K. Pottschmidt, J. Wilms, M. Hanke, R. E. Rothschild, P. Kretschmar, N. S. Schulz, D. P. Huenemoerder, D. Klochkov, and R. Staubert, Astron. Astrophys. 519, A37 (2010).ADSCrossRefGoogle Scholar
  67. 67.
    N. I. Shakura, K. A. Postnov, A. Y. Kochetkova, and L. Hjalmarsdotter, Phys. Usp. 56, 321 (2013).ADSCrossRefGoogle Scholar
  68. 68.
    A. Gonzalez-Galan, E. Kuulkers, P. Kretschmar, S. Larsson, K. Postnov, A. Kochetkova, and M. H. Finger, Astron. Astrophys. 537, A66 (2012).ADSCrossRefGoogle Scholar
  69. 69.
    K. A. Postnov, N. I. Shakura, A. Y. Kochetkova, and L. Hjalmarsdotter, Eur. Phys. J. Web of Conf. 64, 2002 (2014).CrossRefGoogle Scholar
  70. 70.
    S. P. Drave, A. J. Bird, L. Sidoli, V. Sguera, A. Bazzano, A. B. Hill, and M. E. Goossens, Mon. Not. R. Astron. Soc. 439, 2175 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • N. I. Shakura
    • 1
  • K. A. Postnov
    • 1
  • A. Yu. Kochetkova
    • 1
  • L. Hjalmarsdotter
    • 1
  • L. Sidoli
    • 2
  • A. Paizis
    • 2
  1. 1.Sternberg Astronomical Institute, Moscow State UniversityMoscowRussia
  2. 2.INAF, Istituto di Astrofisica Spaziale e Fisica CosmicaMilanoItaly

Personalised recommendations