Astronomy Reports

, Volume 57, Issue 10, pp 715–725 | Cite as

Types of gaseous envelopes of “hot Jupiter” exoplanets

  • D. V. BisikaloEmail author
  • P. V. Kaigorodov
  • D. E. Ionov
  • V. I. Shematovich


As a rule, the orbital velocities of “hot Jupiters,” i.e., exoplanets with masses comparable to the mass of Jupiter and orbital semi-major axes less than 0.1 AU, are supersonic relative to the stellar wind, resulting in the formation of a bow shock. Gas-dynamical modeling shows that the gaseous envelopes around hot Jupiters can belong to two classes, depending on the position of the collision point. if the collision point is inside the Roche lobe of the planet, the envelopes have the almost spherical shapes of classical atmospheres, slightly distorted by the influence of the star and interactions with the stellar-wind gas; if the collision point is located outside the Roche lobe, outflows from the vicinity of the Lagrangian points L1 and L2 arise, and the envelope becomes substantially asymmetrical. The latter class of objects can also be divided into two types. If the dynamical pressure of the stellar-wind gas is high enough to stop the most powerful outflow from the vicinity of the inner Lagrangian point L1, a closed quasi-spherical envelope with a complex shape forms in the system. If the wind is unable to stop the outflow from L1, an open aspherical envelope forms. The possible existence of atmospheres of these three types is confirmed by 3D numerical modeling. Using the typical hot Jupiter HD 209458b as an example, it is shown that all three types of atmospheres could exist within the range of estimated parameters of this planet. Since different types of envelopes have different observational manifestations, determining the type of envelope in HD 209458b could apply additional constrains on the parameters of this exoplanet.


Astronomy Report Stellar Wind Contact Discontinuity Lagrangian Point Planetary Atmosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Murray-Clay, E. I. Chiang, and N. Murray, Astrophys. J. 693, 23 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    M. Mayor and D. Queloz, Nature 378, 355 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    D. Charbonneau, T. M. Brown, D. W. Latham, and M. Mayor, Astrophys. J. Lett. 529, L45 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Désert, et al., Nature 422, 143 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Désert, et al., Astrophys. J. Lett. 676, L57 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    L. Ben-Jaffel, Astrophys. J. Lett. 671, L61 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    A. Vidal-Madjar, J.-M. Désert, A. Lecavelier des Etangs, et al., Astrophys. J. Lett. 604, L69 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    L. Ben-Jaffel and S. Sona Hosseini, Astrophys. J. 709, 1284 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    J. L. Linsky, H. Yang, K. France, et al., Astrophys. J. 717, 1291 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    R. V. Yelle, Icarus 170, 167 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    A. García Muñoz, Planet. and Space Sci. 55, 1426 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    T. T. Koskinen, M. J. Harris, R. V. Yelle, and P. Lavvas, Icarus (2013, in press); arXiv:1210.1536 [astro-ph] (2012).Google Scholar
  13. 13.
    H. Lammer, K. G. Kislyakova, M. Holmström, et al., Astrophys. Space Sci. 335, 9 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    A. Lecavelier Des Etangs, D. Ehrenreich, A. Vidal-Madjar, et al., Astron. Astrophys. 514, A72 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    L. Fossati, C. A. Haswell, C. S. Froning, et al., Astrophys. J. Lett. 714, L222 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    L. Fossati, S. Bagnulo, A. Elmasli, et al., Astrophys. J. 720, 872 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    D. Lai, C. Helling, and E. P. J. van den Heuvel, Astrophys. J. 721, 923 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    S.-L. Li, N. Miller, D. N. C. Lin, and J. J. Fortney, Nature 463, 1054 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    A. A. Vidotto, M. Jardine, and C. Helling, Astrophys. J. Lett. 722, L168 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    A. A. Vidotto, M. Jardine, and C. Helling, Mon. Not. R. Astron. Soc. 411, L46 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    A. A. Vidotto, M. Jardine, and C. Helling, Mon. Not. R. Astron. Soc. 414, 1573 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    D. Bisikalo, P. Kaygorodov, D. Ionov, et al., Astrophys. J. 764, 19 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    A. Lecavelier des Etangs, V. Bourrier, P. J. Wheatley, et al., Astron. Astrophys. 543, L4 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    T. T. Koskinen, R. V. Yelle, P. Lavvas, and N. K. Lewis, Astrophys. J. 723, 116 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).Google Scholar
  26. 26.
    V. B. Baranov and K. V. Krasnobaev, Hydrodynamical Theory of Cosmic Plasma (Nauka, Moscow, 1977) [in Russian].Google Scholar
  27. 27.
    G. L. Withbroe, Astrophys. J. 325, 442 (1988).ADSCrossRefGoogle Scholar
  28. 28.
    S. H. Lubow and F. H. Shu, Astrophys. J. 198, 383 (1975).ADSCrossRefGoogle Scholar
  29. 29.
    A. A. Boyarchuk, D. V. Bisikalo, O. A. Kuznetsov, and V. M. Chechetkin, Mass Transfer in Close Binary Stars (Taylor and Francis, London, 2002).Google Scholar
  30. 30.
    D. V. Bisikalo, A. A. Boyarchuk, P. V. Kaigorodov, and O. A. Kuznetsov, Astron. Rep. 47, 809 (2003).ADSCrossRefGoogle Scholar
  31. 31.
    J. I. Moses, C. Visscher, J. J. Fortney, et al., Astrophys. J. 737, 15 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • D. V. Bisikalo
    • 1
    Email author
  • P. V. Kaigorodov
    • 1
  • D. E. Ionov
    • 1
  • V. I. Shematovich
    • 1
  1. 1.Institute of AstronomyRussian Academy of SciencesMoscowRussia

Personalised recommendations